

自硬树脂砂高温力学性能的研究

彭昕¹,祁雨阳¹,刘振伟¹,万鹏¹,李文¹,沈旭¹,计效园¹,*殷亚军¹,李远才¹,*周建新¹ (1 华中科技大学材料成形与模具技术全国重点实验室,湖北 武汉 430074;

2 武汉工程大学机电工程学院, 湖北 武汉 430205)

*通讯作者:周建新,男,教授,博士。E-mail: zhoujianxin@hust.edu.cn *通讯作者:殷亚军,男,副教授,博士。E-mail: yinyajun436@hust.edu.cn

摘 要:自硬树脂砂中的树脂硬化后形成的树脂膜将松散的原砂黏结起来,使砂型(芯)具有强度。而在浇注过程中,砂型(芯)中的树脂与高温金属液直接或间接接触,迅速升温发生裂解,其力学性能发生极大变化进而产生相关铸造缺陷。为了明确这一过程的具体机理,探究树脂砂在高温下力学性能的变化与其原因是十分有必要的。为此,本文直接检测了三种自硬树脂砂在不同树脂加入量、不同温度下的抗压强度;通过热分析手段分析了三种自硬树脂升温中的热解过程及不同的反应阶段与产物;并借此探讨树脂砂宏观强度变化与内在树脂热解的关联性。其结果为进一步研究与型(芯)砂高温力学性能相关的铸件缺陷提供数据支撑。

关键词: 自硬树脂砂; 树脂加入量; 高温抗压强度; 树脂热分解

Research on High-Temperature Mechanical Properties of No-bake Resin-bonded Sand

PENG Xin¹, QI Yu-yang¹, LIU Zhen-wei¹, WAN Peng¹, LI Wen¹, SHEN Xu¹, JI Xiao-yuan¹, YIN Ya-jun¹, LI Yuan-cai¹ and *ZHOU Jian-xin¹

(1. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan, 430074, People's Republic of China; 2. School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China)

Abstract: No-bake resin-bonded sand (NBRBS) is widely used in molding and core-making processes. The resin film and bonding bridges formed after resin hardening consolidate the loose base sand, imparting strength to the sand mold (core). During the pouring process, the resin within the sand mold (core) directly or indirectly contacts the high-temperature molten metal, rapidly heating up and undergoing pyrolysis. This causes its mechanical properties to undergo significant changes, leading to related casting defects. To clarify the specific mechanisms of this process, it is essential to investigate the changes in the mechanical properties of resin-bonded sand at high temperatures and their underlying causes. The research work presented in this paper includes: 1) Directly measuring the compressive strength of three types of no-bake resin-bonded sands under different resin addition levels and temperatures. 2) Analysing the pyrolysis process of three no-bake resins during heating via thermal analysis techniques, specifically identifying different reaction stages and products. 3) Establishing correlations between the macro-scale strength changes in the resin-bonded sand and the internal resin pyrolysis. This research holds significant implications for addressing casting defects related to the high-temperature mechanical properties of the mold (core).

Keywords: no-bake resin-bonded sand; resin dosage; high temperature compressive strength; resin pyrolysis

1 前言

砂型铸造是满足对低成本、结构复杂且高质量的大型金属零件需求的主要技术之一^[1-4]。自硬树脂砂(No-bake resin-bonded sand,NBRBS)工艺因其

诸多优势^[5,6]而被广泛应用于砂型铸造中,并在铸造行业的砂型造型和制芯领域占据主导地位数十年^[7,8]。 在此工艺中,原砂、树脂和固化剂被均匀混合,固 化后的树脂包覆在砂粒表面。树脂与固化剂反应后,

砂粒相互粘结形成用于铸造的砂型和砂芯[8]。

在铸造过程中,砂型和砂芯直接与高温金属液接触,其中固化的树脂在高温(超过 1200℃^[9,10])和缺氧环境^[11-13]下发生各种复杂的反应,导致其力学性能发生显著变化,从而产生诸如热裂和脉纹等与模具高温力学性能相关的缺陷^[14]。为了更好地理解砂型铸造过程中树脂的热解机制,并为工厂砂铸工艺中选择树脂类型和添加量提供更优指导,分析树脂及树脂粘结砂在高温下的性能至关重要。

然而,当前对自硬树脂砂热力学性能的研究存在一个局限性,即树脂砂力学性能检测的实验温度范围。以铸铁为例,其浇注温度可达 1400℃以上,而此时模具温度仍保持在约 1000℃^[15]。

尽管研究人员已在较宽温度范围内研究了树脂及其热解产物的性能[$^{16-18}$],但当前研究主要测试树脂砂在 500° C以下的热力学性能。Bargaoui Hiba 等人研究了室温至 450° C之间铸造砂芯及粘结树脂的行为[11]。Liu 等人在室温下测试了不同组分含量的呋喃树脂砂的强度[19]。Stauder 等人在室温条件下研究了四种粘结剂类型、不同储存时间砂芯的行为[20]。Ghosh, D.K. 测试了树脂砂在 450° C下的高温强度和残留强度[21]。González, R 等人研究了室温至 150° C之间,粘结剂种类和树脂加入量对树脂砂性能的影响[22]。

如前所述,由树脂砂制成的模具和型芯在超过1000℃的高温下直接与金属液接触,且许多区域的温度可能远高于500℃。因此,仅测试和分析500℃以下的力学性能是不充分的。在部分研究中,树脂砂的测试温度范围超过了500℃。Motoyama^[23]等人和Inoue^[24]等人设计了实验装置以测量铸造及冷却过程中金属与砂型之间的作用力。然而,这些研究并未对树脂砂的某一特定力学性能进行直接的检测和分析。

为了更好地理解砂型铸造过程中树脂的热解机制^[25],并为工厂砂铸工艺中选择树脂类型和添加量提供更优的数据支撑,本文直接检测并比较了三种自硬树脂砂在不同树脂添加量下、超过 500℃的高温抗压强度。通过实验,研究了粘结剂类型、组分配比及温度对 500℃以上(高温区)抗压强度的影响。此外,通过热分析法及实验设计,分析了三种自硬树脂在实际铸造生产过程中的热解过程。本文旨在测量三种自硬树脂砂的抗压强度,分析不同因

素下高温抗压强度变化的原因;结合树脂的热分析结果初步讨论其宏观强度变化与树脂内部热解过程 之间的关联。

2 试验过程

为研究第一章提出的相应问题,本文测试了三种自硬树脂砂在不同加入量下的 500℃~900℃高温抗压强度。实验使用的原材料及实验步骤具体如下。

2.1 实验原材料

本研究使用了3种树脂粘结剂,分别为自硬碱性酚醛树脂砂、自硬呋喃树脂砂和自硬酚脲烷树脂砂。每种树脂及其固化剂的具体信息详见表1~表3。本研究聚焦于树脂种类与加入量对强度的影响,为排除原砂的影响,本实验中使用的原砂均为大林标准砂,其具体成分如表4示。

表 1 碱酚醛树脂 (01) 及固化剂 (G01) 在 25℃时 的参数

Tab. 1 Characteristics of alkaline phenolic resin (01) and its curing agent (G01) at 25 $^{\circ}\mathrm{C}$

牌号	粘度/ mPa • s	密度/ g·cm ⁻³	游离 甲醛	酯含量 /%	游离酸 /%
01	≤90	1.2~1.3	≤0.3%	-	-
G01	≤50	1.1~1.2	-	≥91	≤0.2

表 2 呋喃树脂(SQM400)及固化剂(GL300)在 25℃时的参数

Tab. 2 Characteristics of furan resin (SQM400) and its curing agent (GL300) at 25°C

			,		
牌号	粘度/ mPa•s	密度/ g·cm ⁻³	游离 甲醛	氯含量 /%	总酸度 /%
01	≤50	1.1~1.2	≤0.3%	≤4.0%	-
G01	≤10	1.1~1.2	-	-	18~21

表 3 酚脲烷树脂组分一(HTZ-I)及组分二(HTZ-II) 在 25℃时的参数

Tab. 3 Characteristics of phenolic urethane resin component 1 $$(\mbox{HTZ-I})$$ and component 2 (HTZ-II) at 25 $^{\circ}{\rm C}$

牌号	粘度/ mPa•s	密度/ g·cm ⁻³
HTZ-I	€50	1.1~1.2
HTZ-II	≤10	1.1~1.2

表 4 大林标准砂的化学成分

Tab. 4 Chemical component of DL base sand

成分	SiO_2	Al_2O_3	Fe ₂ O ₃	CaO+M gO	Na ₂ O+K ₂ O
wt%	≥90.0	< 4.50	< 0.30	< 0.40	< 3.00

2.2 测试树脂高温抗压强度实验步骤

本文设计实验测试了三种自硬树脂砂在不同加入量下的 500℃~900℃高温抗压强度。测试过程中,试样被加热至特定的温度,并在其未冷却的情况下直接检测其强度。

在树脂砂试样的制备过程中,干燥的原砂、树脂及其固化剂按照一定的比例与顺序进行混合并填入模具中。采用研究团队设计并获得专利授权的模具^[26]制备了空心圆柱形试样。试样脱模后保存于可调控温湿度的烘干箱内。本研究中使用的树脂砂样及树脂样的保存条件均与工厂实际生产情况相同(T=20°C, RH=35%)。高温抗压强度测试流程如图1所示。实验中不同组的粘结剂种类及加入量如表5所示。

表 5 各实验组的粘结剂种类及加入量

Tab. 5 Ratios of no-bake resin-bonded sand

粘结剂	配比	原砂: 树脂: 固化剂	树脂加入量%
	APR1	1000: 12: 2.4	1.2
碱酚醛	APR2	1000: 15: 3.0	1.5
	APR3	1000: 20: 4.0	2.0
	FR1	1000: 10: 4.0	1.0
呋喃	FR2	1000: 12: 4.8	1.2
	FR3	1000: 14: 5.6	1.4
粘结剂	配比	原砂: 组分 I: 组分 II	树脂加入量%
	PUR1	1000: 6: 6	1.2
酚脲烷	PUR2	1000: 7: 7	1.4
	PUR3	1000: 8: 8	1.6

图 1 三种自硬树脂砂高温抗压强度的检测流程示意图 Fig.1 The testing procedure for high-temperature compressive strength of three types of no-bake resin-bonded sand

试验结果中,每个温度下的高温抗压强度为该组 10 个试验的平均值,结果图中的误差棒依据该组试样的标准差绘制。

采用热重分析(Thermogravimetric Analysis,TGA)仪测量了三种自硬树脂在氩气作为吹扫气体条件下,从室温加热至超过 1000° 过程中的质量损失[27]。加热速率为 15K/min。

将树脂与固化剂混合, 使其固化成树脂块, 并

在室温下存放 24 小时。样品的存放温度与湿度与铸造车间的实际生产条件保持一致。随后,将三个树脂块磨成粉末,并使用 Jupiter STA449 F3 热分析仪逐一进行分析。样品及制备步骤见图 2。

2.3 树脂热重分析实验步骤

图 2 三种自硬树脂砂热重分析的检测流程示意图 Fig.2 The testing procedure for thermogravimetric analysis of three types of no-bake resin-bonded sand

3 试验结果及分析

3.1 酚脲烷树脂砂

对酚脲烷树脂砂进行了压缩测试,以评估其在500℃至900℃温度范围内的性能。酚脲烷树脂砂的抗压强度曲线如图3(a)所示,其强度损失如图3(b)所示。主要观察结果如下:

随着温度升高,酚脲烷树脂砂的抗压强度逐渐下降。当温度在 500-800℃之间时,强度随温度升高而迅速下降;当温度在 800-900℃之间时,强度随温度升高而缓慢下降。从图 3(a)可见,在 500-900℃范围内,酚脲烷树脂砂的高温抗压强度随树脂含量的增加而增加。这一现象在 500-700℃之间尤为明显。在 700℃以上时,三种树脂添加量下的抗压强度非常接近,表明树脂添加量对 500-700℃之间的抗压强度影响较大,而对 700-900℃之间的抗压强度影响较小。造成此现象的原因可能是:树脂砂中的酚脲烷树脂在 500-700℃的加热过程中迅速热解,导致强度显著降低。在 700-900℃时,由于树脂几乎消耗殆尽,三种添加量下的强度非常接近,因此在 900℃时,三种添加量的强度几乎相等。

从图 3(b)可见,当树脂添加量为 PUR1 和PUR2 时,抗压强度在 700-800℃之间下降幅度最大;而当树脂添加量为 PUR3 时,抗压强度在 600-700℃之间下降幅度最大,且远超过树脂含量较低的PUR1 和 PUR2。此外,三种添加量在 700-800℃时的抗压强度几乎相等。在 600-700℃温度范围内,酚脲烷树脂发生剧烈的热分解,在此过程中,聚合物链内较弱的键(如亚甲基(-CH₂-)和醚键(C-O-C)

开始断裂。在600-700℃温度区间内,这种现象导

致强度损失随酚脲烷树脂含量的增加成比例增加。

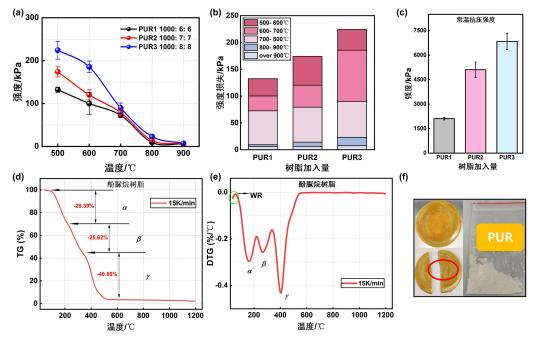


图 3 酚脲烷树脂砂及其树脂的检测结果

(a)树脂砂高温抗压强度 (b)树脂砂在各温度区间的强度损失 (c)树脂砂室温下的抗压强度 (d)树脂 的热重曲线 (e)树脂的 DTG 曲线 (f)树脂块及树脂粉末样品

Fig.3 Test results of phenolic urethane resin-bonded sand and its resin. (a)High temperature compressive strength of resin-bonded sand. (b)Strength loss at different temperature ranges. (c) Room temperature compressive strength of resin-bonded sand. (d) TG curves of resin. (e) DTG curves of resin. (f) Resin bar and resin powder sample.

通过热重分析(TG)评估了固化的酚脲烷树脂在加热过程中的质量损失。图 3(d)中的 TG 曲线显示,自硬酚脲烷树脂(PUR)的质量损失始于室温至 70°C的水分释放,该失重段对应图 3 (e)中绿色圆圈标注部分。当温度超过 70°C后,酚脲烷的热解开始,伴随一些溶剂的释放,直至约 100°C。

随后发生三个反应阶段,这对应于图 3 (e)中显示的三个峰值,具体温度细节参见表 6。第一峰出现在 100℃至 200℃之间,α峰温度(Tα)在 150℃至 170℃之间。第二峰出现在 200℃至 350℃之间。两个β峰分别位于 260℃至 270℃之间,同样随加热速率增加而发生偏移。

我们对 DTG 曲线中第一峰和第二峰的研究结果与一些现有文献相符。Bargaoui Hiba 等人[11]在氩气氛围下,以较低加热速率(2 K/min 和 10 K/min)通过 TG 分析评估了用于冷芯盒工艺的类似树脂的热解。他们也发现存在两个主要反应阶段,分别发生在 150-250℃和 250-400℃,这与我们的结果接近。Jomaa 等人[^{28]}在氮气氛围下,以较高的加热速率(20 K/min、60 K/min 和 80 K/min)通过 TG 分析研究了聚氨酯的热解过程。该研究同样发现了两步反应。

此外,其峰值温度升高至更高区间:第一峰(多元醇分解)出现在 200-300°C,第二峰(聚异氰酸酯分解)发生在 400-600°C。

与强度测试结果相比,TG/DTG 分析表明酚脲 烷树脂在 400-550℃之间发生更剧烈的反应。此温度范围略低于强度测试中观察到的温度范围。我们推测这种差异源于两种测试方法加热速率的显著不同: TGA 采用相对较慢的加热速率(15K/min),而强度测试装置的加热速率则高得多(10-15 K/s)。TGA 中较慢的加热速率为酚脲烷树脂提供了充足的反应时间,导致观测到的反应温度范围较低。

表 6 酚脲烷树脂 DTG 曲线的峰及反应机理
Tab. 6 Temperatures of peaks in DTG Curves of No-Bake PUR at
Different Heating Rates

峰	温度	反应机理
WR	≤67.60°C	自由水的释放
T_{α}	162.60°C	多元醇分解
T_{eta}	265.10°C	多元醇分解
T_{γ}	402.60°C	聚异氰酸酯分解

3.2 呋喃树脂砂

呋喃树脂砂的抗压强度曲线如图 4(a)所示,其在各温度区间内的强度损失如图 4(b)所示。主要结果如下:

随着温度升高,呋喃树脂砂的抗压强度逐渐下降。当温度在 500 至 600 ℃之间时,强度随温度升高而略微下降;当温度在 600 至 700 ℃之间时,强度随温度升高而迅速下降;然而,当温度在 700 至 900 ℃之间时,强度随温度升高而缓慢下降。

从图 4(a)可见,在 500 至 900℃范围内,呋喃树脂砂的高温抗压强度随树脂添加量的增加而增加。这一现象在整个测试温度范围内均很明显。尽管在高温下树脂的热解过程会导致树脂砂的强度下降,但高温抗压强度始终与树脂添加量呈正相关。对此现象的一个可能解释是:在本实验的树脂添加量范围内,残留的树脂及其热解产物共同作用,有助于

提高树脂砂的强度。因此,即使在高温热解后,添加量更高的试样仍表现出更高的强度。

图 4(b)表明,在三种不同树脂添加量下,呋喃树脂砂的抗压强度在 600-700℃温度区间内表现出最大的强度损失幅度,远超其他温度范围。 此外,三种添加量在 700-800℃时的强度损失几乎相等。然而,呋喃树脂砂在 800℃以上的强度损失相对较小。这表明在加热过程中,树脂砂中的呋喃树脂主要在 600-700℃发生热解反应,导致该温度区间内树脂砂强度显著下降。相反,呋喃树脂砂在 700℃以上的强度损失较小。

通过热重分析评估了固化后的呋喃树脂在热解过程中的质量变化。基于 TG 曲线和 DTG 曲线, 呋喃树脂的热解过程被分为三个阶段(如图 4 所示), 各温度范围内的峰值温度见表 7。

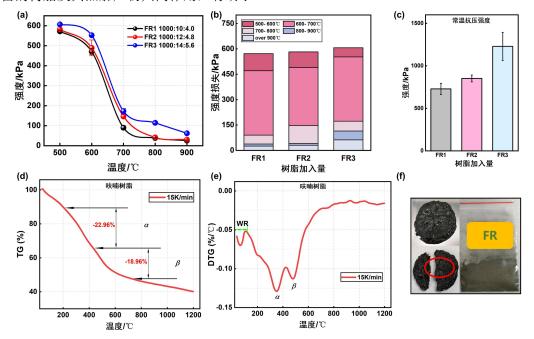


图 4 呋喃树脂砂及其树脂的检测结果

(a)树脂砂高温抗压强度 (b)树脂砂在各温度区间的强度损失 (c)树脂砂室温下的抗压强度 (d)树脂 的热重曲线 (e)树脂的 DTG 曲线 (f)树脂块及树脂粉末样品

Fig.4 Test results of furan resin-bonded sand and its resin. (a)High temperature compressive strength of resin-bonded sand. (b)Strength loss at different temperature ranges. (c) Room temperature compressive strength of resin-bonded sand. (d) TG curves of resin. (e) DTG curves of resin. (f) Resin bar and resin powder sample.

第一阶段: 37.7° C 至 107.7° C($36.1-121.1^{\circ}$ C),此阶段呋喃树脂质量快速下降 16.87%。此现象可能是树脂中游离 H_2 O 和甲醛蒸发的结果。在呋喃树脂的固化过程中,缩合反应会生成游离 H_2 O 和甲醛,这些是沸点相对较低的组分。因此,在初始加热阶段,这些组分从样品中蒸发,导致此阶段观测到的质量

损失。

第二阶段: 205.24°C 至 422.74°C,此阶段 FR 质量快速下降 23.00%。此阶段发生的反应导致样品释放出大量气态产物。根据 Wan^[29]的研究,基于 TG/DTG 和 TG-MS 结果,此阶段有大量甲醛和甲醇从呋喃树脂中释放出来。

第三阶段: 422.74°C 至 732.74°C,此阶段呋喃树脂质量快速下降 18.96%。此阶段发生的反应同样导致样品释放出大量气态产物。根据 Wan 的研究^[29],此阶段有大量甲醛、甲醇和二氧化碳从呋喃树脂中释放出来。

表 7 呋喃树脂 DTG 曲线的峰及反应机理
Tab. 7 Temperatures of peaks in DTG Curves of No-Bake FR at
Different Heating Rates

峰	温度	反应机理
WR	≤107.74°C	自由水与甲醛的释放
T_{α}	350.24°C	甲醛与甲醇的释放
T_{β}	480.24°C	甲醛、甲醇与 CO ₂ 的释放

3.3 碱酚醛树脂砂

随着温度升高,碱性酚醛树脂砂的强度呈现不同速率的急剧下降。当温度处于 500-700°C时,强

度随温度升高显著降低。我们将这一温度范围内碱酚醛树脂砂强度的急剧下降归因于碱酚醛树脂的热解。如图 5(e)所示,碱酚醛树脂的 DTG 曲线在此温度范围内出现两个显著峰,这支持了上述推断。当温度处于 700-800°C时,强度下降速率减缓;而当温度处于 800-900°C时,碱酚醛树脂砂的强度变化极小,强度下降速率趋近于零。

由图 5 (a)可见,在三种树脂添加量水平下,碱酚醛树脂砂的强度均随树脂含量增加而提高,尤其在 500-800℃范围内表现显著,但在 800-900℃时三种添加量的强度值非常接近。该现象的可能原因是:树脂在 500-800℃热解过程中产生的残余树脂及固态产物仍能为碱酚醛树脂砂提供强度支撑。因此,树脂添加量越多,残余物质生成量越大,样品的高温抗压强度相应越高。

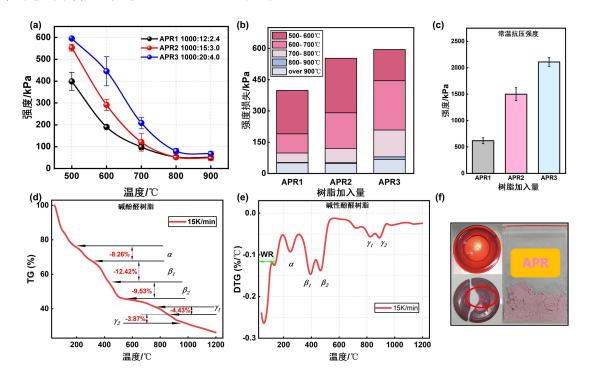


图 5 碱酚醛树脂砂及其树脂的检测结果

(a)树脂砂高温抗压强度 (b)树脂砂在各温度区间的强度损失 (c)树脂砂室温下的抗压强度 (d)树脂 的热重曲线 (e)树脂的 DTG 曲线 (f)树脂块及树脂粉末样品

Fig.5 Test results of alkaline phenolic resin-bonded sand and its resin. (a)High temperature compressive strength of resin-bonded sand. (b)Strength loss at different temperature ranges. (c) Room temperature compressive strength of resin-bonded sand. (d) TG curves of resin. (e) DTG curves of resin. (f) Resin bar and resin powder sample.

如图 5(b)所示,在三种不同树脂添加量条件下, 碱酚醛树脂砂在 500-700℃均出现显著的强度损失, 当温度达到 700℃时强度降幅超过 70%。然而在 800-900℃温度范围内,碱酚醛树脂砂的强度损失极 小,其中 APR1 和 APR2 的强度变化在图 5(b)中几乎难以观察。对于该现象的一种可能解释是: 碱酚醛树脂在加热过程中主要在 500-700℃发生热解反应,导致树脂砂试样强度显著降低; 而当温度超过

800℃后,树脂已在升温过程中近乎完全消耗,因此该温度范围内强度未发生明显变化。该解释与TG/DTG 结果一致,其中碱酚醛树脂的 DTG 曲线在400-600℃出现峰值,该化学过程直接导致了500-700℃范围内的强度显著下降。

固化碱酚醛树脂的热解 TGA 和 DTG 曲线如图 7 所示。根据 TGA 和 DTG 的结果,碱酚醛树脂的 热解过程被划分为六个阶段,每个温度范围内的峰值温度列于表 8 中。

第一阶段温度范围为 37℃至 118.1℃,在此期间碱酚醛树脂的质量迅速减少了 16.87%。这一现象很可能是由于树脂中游离水的蒸发所致。由于碱酚醛树脂在固化过程中会产生游离水,因此该阶段的质量损失大于其他树脂。与 Kmita 等人^[30]的研究结果相比,本研究中的样品游离水损失量是其 10 倍。推测这可能是由于 Kmita 的样品在 60℃下储存,在此期间部分游离水可能已经蒸发,而本研究的样品则是在室温和湿度条件下储存,以模拟实际的铸造生产条件。

表 8 碱酚醛树脂 DTG 曲线的峰及反应机理

Tab. 8 Temperatures of peaks in DTG Curves of No-Bake APR at

Different Heating Rates

峰	温度	反应机理
WR	≤118.14°C	自由水的释放
T_{α}	248.14°C	反应生成水的释放
$T_{\beta 1}$	393.14°C	放热反应生成醚键
$T_{\beta 2}$	465.64°C	双然
$T_{\gamma 1}$	825.64°C	聚合物网络破坏,多环芳烃
$T_{\gamma 2}$	890.64°C	先生成后碳化

第二阶段温度范围为 190.6℃至 308.1℃,在此期间碱酚醛树脂的质量减少了 8.26%。该阶段树脂质量的显著损失很可能是由于样品中水的释放,这些水是在树脂固化过程中酚羟基(-OH)与亚甲基(-CH₂OH)或氢原子^[31]之间发生反应而产生的。这一阶段的反应导致碱酚醛树脂中线性大分子的进一步交联。

第三阶段温度范围为 308.1℃至 430.6℃,在此期间碱酚醛树脂的质量迅速减少了 12.42%。第四阶段温度范围为 430.6℃至 540.6℃,在此期间碱酚醛树脂的质量以一定的速率减少了 9.53%,这一速率慢于第三阶段。相关研究^[12,30]表明,这两个阶段均涉及放热反应,并与醚键的形成有关。

第五阶段温度范围为 763.1℃至 858.1℃,在此期间碱酚醛树脂的质量缓慢减少了 4.43%。第六阶段温度范围为 858.1℃至 940.6℃,在此期间碱酚醛树脂的质量以更慢的速率减少了 3.87%。在这一温度范围内,树脂的聚合物网络被破坏,形成多环芳烃^[32],随后在更高的加热温度(超过 963.3℃)下发生碳化。

4 结论

本文研究了 3 种自硬树脂的热解过程,检测了 其对应的树脂砂在 500℃至 900℃的高温抗压强度。 分析结果表明:

- (1) 当树脂加入量在 1.2-1.6%时,酚脲烷树脂砂的高温抗压强度随着树脂加入量的增加而增大。酚脲烷树脂在升温至 163-570℃时发生了多元醇和聚异氰酸酯的分解。这解释了为何酚脲烷树脂砂强度在 500-700℃快速下降而在 800℃以上下降速率不同。
- (2) 当树脂加入量在 1.0-1.4%时,呋喃树脂砂的高温抗压强度随着树脂加入量的增加而增大,随着温度的升高而降低。呋喃树脂在升温至 350℃和 480℃附近时释放了甲醛、甲醇与二氧化碳,树脂在 700℃以前基本反应完。这解释了为何呋喃树脂砂强度在 500-700℃快速下降而在 700-900℃ 极缓下降。
- (3)当树脂加入量在 1.2-2.0%时,碱酚醛树脂砂的高温抗压强度随着树脂加入量的增加而增大,随着温度的升高而降低。碱酚醛树脂在氩气气氛下,升温至 240-700℃时,分别发生了反应水的释放和形成醚键的放热反应,而在 750℃以上聚合物网络破坏多环芳烃先生成后碳化。
- (4) 当每种树脂都取中间树脂加入量时,树脂砂高温抗压强度在 500-700℃时呋喃>碱酚醛>酚脲烷,800℃以上时碱酚醛>呋喃>酚脲烷。

参考文献:

- [1] LIU W, YAO P, YAO S. Restraining warping of SLS sand mold via phenolic resin composites[J]. Materials and manufacturing processes, 2025,40(2): 274-283.
- [2] OGUNTUYI S D, NYEMBWE K, SHONGWE M B, et al. A review of the influence of sand properties on parts manufactured by rapid sand casting through additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2025.

- [3] SHI J, SHAN Z, YANG H, et al. Research on frozen sand mold casting technology for complex thin-walled aluminum alloy castings[J]. Materials Today Communications, 2024,41: 110907.
- [4] LI Y, LIU J, ZHOU H, et al. Study on the Distribution Characteristics of Microstructure and Mechanical Properties Within the Cylinder Head of Low-Pressure Sand Cast Aluminum Alloy[J]. International Journal of Metalcasting, 2022,16(3): 1252-1264.
- [5] DAŃKO R, KMITA A, HOLTZER M, et al. Development of inorganic binder systems to minimise emissions in ferrous foundries[J]. Sustainable Materials and Technologies, 2023,37: e00666.
- [6] KHANDELWAL H, RAVI B. Effect of Binder Composition on the Shrinkage of Chemically Bonded Sand Cores[J]. Materials and manufacturing processes, 2015,30(12): 1465-1470.
- [7] DOBOSZ S M, MAJOR-GABRYŚ K. Strength properties of moulding sands with chosen biopolymer binders[J]. Arch Foundry Eng, 2010,10(3): 17-20.
- [8] 李远才,周建新,殷亚军,等. 我国铸造用树脂砂工艺的应用现状及展望[J]. 铸造,2022,71(03):251-270.
- [9] GOBINATH V M, ANNAMALAI K. Experimental investigation on chilled cast iron tappet manufacturing processes parameters[J]. Materials and manufacturing processes, 2018,33(4): 474-478.
- [10] SHEIKH A K, KHAN M A A, IQBAL H, et al. Casting of adjuster bracket-process optimization and validation[J]. Materials and manufacturing processes, 2018,33(16): 1845-1850.
- [11] BARGAOUI H, AZZOUZ F, THIBAULT D, et al. Thermomechanical behavior of resin bonded foundry sand cores during casting[J]. Journal of Materials Processing Technology, 2017,246: 30-41.
- [12] KMITA A, FISCHER C, HODOR K, et al. Thermal decomposition of foundry resins: A determination of organic products by thermogravimetry–gas chromatography– mass spectrometry (TG–GC–MS)[J]. Arabian Journal of Chemistry, 2018,11(3): 380-387.
- [13] BLANCO-ALEGRE C, CALVO A I, CASTRO-SASTRE M Á, et al. Analysis of gaseous emission and particle number size distributions in metal casting processes with binder jetting moulds[J]. Building and Environment,

- 2024.252: 111297.
- [14] HAMADELLAH A, AIT EL HAJ B, BOUAYAD A. Hot Tearing Evaluation in Metallic and Green Sand Molds of AlCu5MgTi Alloy[J]. International journal of metalcasting, 2024.
- [15] ŞENSOY A T. Numerical simulation and mathematical modeling of the casting process for pearlitic spheroidal graphite cast iron[J]. Open Chemistry, 2022,20(1): 1202-1211.
- [16] WANG Y, CANNON F S, LI X. Comparative Analysis of Hazardous Air Pollutant Emissions of Casting Materials Measured in Analytical Pyrolysis and Conventional Metal Pouring Emission Tests[J]. Environmental Science & Technology, 2011,45(19): 8529-8535.
- [17] STRZEMIECKA B, ZIEBA-PALUS J, VOELKEL A, et al. Examination of the chemical changes in cured phenol-formaldehyde resins during storage[J]. J Chromatogr A, 2016,1441: 106-115.
- [18] LEE Y, KIM D, KIM H, et al. Activation energy and curing behavior of resol- and novolac-type phenolic resins by differential scanning calorimetry and thermogravimetric analysis[J]. Journal of applied polymer science, 2003,89(10): 2589-2596.
- [19] LIU F, YANG L, HUANG Y, et al. Performance of resin bonded sand for magnesium alloy casting[J]. Journal of Manufacturing Processes, 2017,30: 313-319.
- [20] STAUDER B J, KERBER H, SCHUMACHER P. Foundry sand core property assessment by 3-point bending test evaluation[J]. Journal of Materials Processing Technology, 2016,237: 188-196.
- [21] GHOSH D K. Comparison of Molding Sand Technology Between Alphaset (APNB) and Furan (FNB)[J]. Archives of Foundry Engineering, 2019: 11-20.
- [22] GONZÁLEZ R, COLÁS R, VELASCO A. Characteristics of Phenolic-Urethane Cold Box Sand Cores for Aluminum Casting[J]. International Journal of Metalcasting, 2011,5: 41-48.
- [23] MOTOYAMA Y, TAKAHASHI H, INOUE Y, et al. Development of a device for dynamical measurement of the load on casting and the contraction of the casting in a sand mold during cooling[J]. Journal of Materials Processing Technology, 2012,212(6): 1399-1405.

- [24] INOUE Y, MOTOYAMA Y, TAKAHASHI H, et al. Effect of sand mold models on the simulated mold restraint force and the contraction of the casting during cooling in green sand molds[J]. Journal of Materials Processing Technology, 2013,213(7): 1157-1165.
- [25] PENG X, QI Y, LIU Z E A. Toward Understanding of the No-bake Resin Pyrolysis Mechanism during Sand Casting Process[J]. Inter Metalcast, 2025, https://doi.org/10.1007/ s40962-025-01642-3.
- [26] 殷亚军,彭昕,周建新,等. 一种制备树脂砂高温抗压强度测试试样的模具及方法[P]. Chinese patent: ZL 202111425812.7, 2024-12-06.
- [27] CHEN G, LIU T, LUAN P, et al. Distribution, migration, and removal of N-containing products during polyurethane pyrolysis: A review[J]. Journal of Hazardous Materials, 2023,453: 131406.
- [28] JOMAA G, GOBLET P, COQUELET C, et al. Kinetic modeling of polyurethane pyrolysis using non-isothermal thermogravimetric analysis[J]. Thermochimica Acta,

- 2015,612: 10-18.
- [29] WAN P, ZHOU J, LI Y, et al. Kinetic analysis of resin binder for casting in combustion decomposition process[J]. Journal of Thermal Analysis and Calorimetry, 2022,147(11): 6323-6336.
- [30] KMITA A, BENKO A, ROCZNIAK A, et al. Pyrolysis of organic ester cured alkaline phenolic resin: Identification of products[J]. Journal of Analytical and Applied Pyrolysis, 2018,129: 6-12.
- [31] ZHAO Y, YAN N, FENG M W. Thermal degradation characteristics of phenol-formaldehyde resins derived from beetle infested pine barks[J]. Thermochimica Acta, 2013,555: 46-52.
- [32] ALONSO M V, OLIET M, DOMÍNGUEZ J C, et al. Thermal degradation of lignin-phenol-formaldehyde and phenol-formaldehyde resol resins: Structural changes, thermal stability, and kinetics[J]. Journal of thermal analysis and calorimetry, 2011,105(1): 349-356.