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Abstract: Prompted by the lightweighting strategy for new energy vehicles, integrated die-casting Mg alloy technology
has emerged as a research hotspot due to its combined weight reduction potential and emission reduction benefits. This
work focuses on four critical dimensions within the Mg alloy integrated die-casting technology system: material alloy
design, forming defect mechanisms, multi-physics coupled numerical simulation, and component performance control
strategies. It establishes a comprehensive material-process-performance analytical framework. This approach aims to
overcome the fragmented nature of current theoretical research, providing foundational support for building a scientific
theoretical framework for magnesium alloy integrated die-casting. Ultimately, it facilitates the continuous advancement
of this technology towards higher precision and greater reliability.
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1 Introduction
Driven by China's "Dual Carbon" strategic goals

(carbon peak and carbon neutrality) and the
*Energy-Saving and New Energy Vehicle Technology
Roadmap 2.0*, the country's new energy vehicle (NEV)
industry has achieved leapfrog development [1].
Meanwhile, vehicle lightweighting technology has
emerged as the core strategic pathway for reducing
energy consumption and carbon emissions, surpassing
powertrain optimization and transmission efficiency
improvements. Notably, Tesla's innovative application in
the Model Y achieved a breakthrough 30% reduction in
body weight, pioneering a global wave of automotive
lightweighting innovation. From a technical
implementation perspective, modern automotive
lightweighting engineering primarily relies on two
innovative frameworks: material innovation and process
innovation.

Within the lightweight material systems, Mg alloys
offer distinct technical advantages due to their ultralow
density of 1.7 g/cm ³ , 33% lighter than Al alloys and
merely 23% of steel's density [2]–[4]. Research indicates
that replacing 1 kg of traditional steel with Mg alloy
enables a 30 kg CO2-equivalent reduction over the
vehicle's entire lifecycle. Currently, components such as
steering wheels, shock towers, and instrument panel
supports manufactured from Mg alloys have achieved

mass production and application, contributing
significantly to carbon emission reduction. In summary,
the exploration of Mg alloys holds significant potential
for advancing effective and innovative lightweight
solutions in the automotive industry [5].

Within the evolution of advanced manufacturing
technologies, integrated die-casting represents a
revolutionary breakthrough compared to traditional
forming processes such as stamping, welding, and
forging. As illustrated in Fig. 1, this technology employs
ultra-high-pressure die-casting machines coupled with
high-precision mold systems to achieve 60-80%
improvement in component integration, material
utilization exceeding 95%, and 30%-50% reduction in
manufacturing costs versus conventional processes [6]–[8].
Consequently, integrated die-casting has become a
strategic enabler for cost reduction and efficiency
enhancement in high-end manufacturing, finding
extensive adoption in the automotive industry while
expanding into aerospace and 3C product sectors.
Industry implementations demonstrate its transformative
impact: Tesla’s proprietary die-casting system reduced
the Model Y rear underbody assembly from 171 parts to
just 2, cutting per-vehicle costs by 20% while enhancing
structural integrity [9]; Volvo’s Mega-Giga Casting
technology enables die-casting of rear chassis
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components using an 8,000-tonne integrated casting
machine [10]; while Toyota’s Giga Casting 2.0
implementation halved vehicle assembly time,
substantially boosting production efficiency [11].

Fig.1 Comparison of Traditional Stamping-Welding and Giga
Casting Integrated Manufacturing Processes

China's Mg alloy integrated die-casting technology
system has entered a systematic development phase,
achieving breakthrough progress in critical equipment
R&D and engineering applications. Leading
manufacturers exemplified by Chongqing Boao
Magnesium-Aluminum Metal Manufacturing Co., Ltd.
and Zhejiang Wanfeng Meridian New Material
Technology Co., Ltd. have attained continuous, stable
production of 1.6-meter-class automotive instrument
panel support components. The National Engineering
Research Center for Magnesium Alloys at Chongqing
University, in collaboration with industrial partners, has
successfully developed two critical structural
components: rear floor assemblies and battery covers,
utilizing 8,800-tonne ultra-large die-casting equipment.
Engineering validation confirms these components
achieve maximum projected areas on the order of 2.2 m²,
establishing an international size record for magnesium
alloy automotive die-cast structures. Concurrently, Jilin
University and FAW Foundry Co., Ltd. have
collaboratively developed an Mg-Al-RE-Ca integrated
die-casting Mg alloy, successfully implemented in the
monolithic forming of battery packs for hybrid new
energy vehicles [12],[13].

Current research on Mg alloy integrated die-casting
faces significant technical barriers, with the core
constraint being its rigid dependence on ultra-large,
precision die-casting equipment. The limited accessibility
of high-cost machinery (requiring clamping forces
≥4,000 T) restricts the number of global research
institutions with comprehensive experimental capabilities.
This directly impedes foundational data accumulation in
the field, resulting in relatively scarce systematic
research publications and reference-worthy engineering
cases. Addressing this research landscape, this review
focuses on four critical dimensions of the Mg alloy
integrated die-casting framework: material alloy design,

forming defect mechanisms, multi-physics coupled
numerical simulation, and component performance
control strategies. Through systematic analysis of
existing research achievements and technical bottlenecks,
we establish a comprehensive
material-process-performance analytical framework. This
work aims to overcome the fragmented nature of current
theoretical studies, provide foundational support for
building a scientific theoretical system for Mg alloy
integrated die-casting, and ultimately advance this
technology toward higher precision and greater
reliability.

2 Alloy Composition Design for Integrated
Die-Casting of Mg Alloys

Integrated die-cast magnesium alloy components
present significant manufacturing challenges due to their
ultra-large structural dimensions and complex geometries.
Crucially, the prevalent adoption of thin-walled designs
— with critical sections approaching ultra-thin
configurations — imposes dual constraints on
conventional heat treatment: steep thermal gradients
induce macroscopic distortion compromising
dimensional accuracy beyond design tolerances, while
heterogeneous phase transformations promote
microscopic residual stress accumulation that
substantially elevates cracking susceptibility. Driven by
these limitations, the industry prioritizes developing heat
treatment-free alloy systems. Unlike traditional
powertrain components requiring stringent mechanical
properties, these emerging alloys focus on optimizing
critical processing characteristics: enhanced melt fluidity,
superior cast-filling capacity, improved plastic
deformation capability, and elevated-temperature creep
resistance. Within this technical paradigm, conventional
tensile strength requirements may be strategically relaxed,
with balanced component performance achieved through
synergistic optimization of casting process innovations
and intrinsic material properties.

Among various Mg alloy systems, Mg-Al alloys
have emerged as the preferred material for integrated
die-cast components due to their superior casting
characteristics: low melting point, reduced viscosity, and
exceptional fluidity [14]–[16]. Based on compositional
variations, Mg-Al systems are further classified into
Mg-Al-Zn (AZ), Mg-Al-Mn (AM), Mg-Al-Si (AS),
Mg-Al-RE (AE), Mg-Al-Ca (AX), and Mg-Al-Sr (AJ)
series. Fig. 2 compares room-temperature mechanical
performance across these die-cast Mg alloys. The
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following sections systematically elaborate on research
advances and application potential of each alloy system
in integrated die-casting.

Fig.2 Mechanical properties of die-cast Mg alloys with different
composition systems at room temperature [17–27].

2.1 Mg-Al-Zn alloys

In Mg-Al alloys, zinc (Zn) enhances melt fluidity
due to its low melting point (~350° C). It has been
demonstrated that 3 wt% Zn significantly improves
fluidity, but exceeding this level can readily trigger hot
cracking and porosity issues [28]. The castability and hot
tearing susceptibility of AZ-series Mg alloys exhibit
pronounced composition-dependent behavior: elevated
Al content promotes microstructural embrittlement, while
reduced Zn levels increase the propensity for microcrack
formation [29]–[31]. As a primary alloying element, zinc
effectively suppresses the formation of the Mg17Al12
phase in conventional AZ-series die-cast Mg alloys,
thereby remarkably enhancing the creep resistance of
Mg-Al-Zn alloys [32]–[35]. Beyond the Mg17Al12 phase,
modulating the Al/Zn mass ratio enables the formation of
diverse secondary phases within the alloy, including but
not limited to τ-Mg32(Al, Zn)49, φ-Mg5Zn2Al2, ε-MgZn,
and the icosahedral i-Mg44Al15Zn41 phase [35]–[39]. To
further enhance the performance of AZ alloys, minor
elements are frequently introduced. The addition of Sn
exceeding 0.3 wt.% improves castability and reduces die
sticking, particularly in AZ91D, although excessive Sn
additions impair fluidity [40]. Incorporating 0.5 wt.% Sr
into AZ91 alloy lowers the liquidus temperature and
increases fluidity by 14%. Notably, the combined
addition of Sr and B produces a synergistic effect,
resulting in a remarkable increase in fluidity of up to
157% [41]. Yim et al. demonstrated that the fluidity of
AZ31 alloy melt increases with Ca additions (up to 0.5
wt.%), attributable to Ca's grain refining effect [42].
Regarding age-hardening behavior, Srinivasan et al.
observed that Pb additions prolong the time required for
AZ91 alloy to reach peak hardness [43]. Conversely, minor

Nd additions, while retarding the aging kinetics in AZ80
alloy, ultimately enhance its mechanical properties [44].
Controlled additions of rare earth (RE) elements, such as
by optimizing the La/Nd mass ratio, can improve fluidity
and hot tearing resistance [45]. It should be noted, however,
that excessive RE content impairs both corrosion
resistance and ambient-temperature strength [46]–[48].

2.2 Mg-Al-Mn alloys

Mg-Al-Mn and Mg-Al-Zn-Mn alloys currently
dominate over 90% of structural applications [49].
However, the prevalent AZ91 alloy
(Mg-9.5Al-0.5Zn-0.3Mn, wt.%) exhibits insufficient
toughness (elongation <10%) for energy-absorbing
components such as seat frames. In contrast, AM60
(Mg-6Al-0.3Mn) and AM50 (Mg-5Al-0.3Mn) alloys are
preferred for automotive lightweighting due to superior
ductility, castability, and corrosion resistance.
High-pressure die-casting (HPDC) produces a
characteristic "sandwich" microstructure under rapid
cooling: a fine-grained dense surface layer and a
coarse-grained porous core region [50],[51]. While Weiler et
al. [52] attributed the skin/core hardness discrepancy in
AM60 to grain size effects, Biswas et al. [53]

demonstrated that the area fraction of β-Mg₁₇Al₁₂ phase
plays a more dominant role. Digital Image Correlation
(DIC) analysis by Zhang et al. revealed strain
localization predominantly in pore-rich zones, with
β-phase distribution having minimal impact on
deformation heterogeneity, as shown in Fig. 3 [54].
Furthermore, Sn addition refines eutectic phase
boundaries and progressively enhances hardness [55]. In
Mg-6Al-0.5Mn-2Ca alloys, Al2Ca phase co-precipitation
with creep-induced fine particles effectively suppresses
dislocation climb/glide mechanisms [56].

Fig.3 (a) Representative binary image depicting
through-thickness distribution of the porosity in the plate. The

areas in black are porosity, and the areas in white are material, (b)
Contour plots of the equivalent strain εeq after 3% macroscopic
axial deformation under tension for a selected region of AM60

alloy under as-cast state and solid solution state [54].



第 17 届亚洲铸造会议
THE 17THASIAN FOUNDRYCONGRESS

- 483 -

2 有色合金

Part 2: Non-Ferrous Alloy

2.3 Mg-Al-RE alloys

The strengthening effect of rare earth (RE) elements
on Mg alloys was first documented as early as the 1930s.
Research by Foerster (1972-73) demonstrated that adding
1% RE substantially enhanced the creep resistance of
Mg-Al-based alloys. Notably, at lower Al levels, RE
elements improved the creep strength of Mg-Al alloys
more effectively than Si additions [57]. The AE42 alloy
(Mg-4Al-2RE), established as a benchmark
creep-resistant die-cast magnesium alloy, outperforms
AZ91 at 423 K (150℃) but suffers from hot tearing
during casting and rapid creep degradation above 150℃
[58]–[60]. This accelerated the development of AE44
(Mg-4Al-4RE), which exhibits superior fluidity, an
optimal strength-ductility balance, and a higher eutectic
volume fraction [61],[62]. Consequently, AE44 has become
the material of choice for automotive mega-castings such
as engine mounts and the 2016 Ford Focus subframe [63].
Notably, industrial RE additions utilize mixed rare earths
(typical: 60% Ce, 30% La, ≤10% Nd, trace Pr) derived
from direct ore conversion without elemental separation.
Recent cost reductions for single-element (La/Ce) and
binary (Ce + La) RE mixtures relative to quaternary
blends have spurred development of novel AE alloys [64].
Zhang et al. fabricated Mg-4Al-xRE-0.3Mn (RE=La or
Ce, x=1, 2, 4, 6 wt.%) via high-pressure die casting. The
Mg-4Al-4La-0.3Mn and Mg-4Al-4Ce-0.3Mn alloys
demonstrated exceptional tensile properties and thermal
resistance below 200℃, attributed to thermally stable
Al₁₁RE₃ strengthening phases with high volume fractions
[65],[66].

2.4 Mg-Al-Si alloys

The Mg-2Al-1Si (AS21) alloy represents a
specialized creep-resistant die-casting material developed
for automotive engine applications [67]. Blum et al. [68]

established that Mg2Si particles distributed along grain
boundaries significantly enhance long-term creep
performance, enabling superior resistance compared to
conventional AZ91 and Mg17A112-containing alloys
under low strain rates and elevated temperatures.
However, coarse Mg2Si phases exert detrimental effects,
necessitating precise morphological control as a critical
pathway for developing high-performance Mg-Al-Si
alloys. Strategic elemental additions effectively refine
Mg2Si: Sr additions progressively regularize particle
morphology [69]; Sb forms high-melting Mg3Sb2 phases
that serve as heterogeneous nucleation sites for refined
Mg2Si [70]; while Ce simultaneously transforms acicular

Mg2Si into fine fibrous structures and generates
growth-inhibiting CeMg2Si2 phases, both contributing to
mechanical property enhancements surpassing those
achievable with Mg2Si alone [71],[72].

2.5 Mg-Al-Ca alloys

Ca emerges as the most promising alloying element
for magnesium alloys due to its cost efficiency coupled
with multifunctional benefits: enhanced creep resistance,
improved castability, and reduced flammability [46],[73],[74].
These advantages have enabled commercial Mg-Al-Ca
alloys such as the MRI series (Mg-Al-Ca-Sr/Sn-Sr) and
AXJ530 (Mg-5Al-3Ca-0.2Sr) [64]. Research indicates that
increasing Ca content significantly reduces hot tearing
susceptibility in Mg-Al-Ca alloys, with minimal
influence from Al variations [75]. Under high-stress creep
conditions, AZ91 outperforms MRI153 due to superior
work-hardening capacity and yield strength [76]. Zhang et
al. [26] developed novel AX die-casting alloys employing
precisely controlled trace Ca additions to achieve
thermally stable solid solution strengthening,
concurrently enhancing room- and elevated-temperature
strength, distinct from the eutectic phase modification
strategy in MRI alloys. Through EET theory calculations,
Min et al. revealed that Ca dissolution in the Mg17Al12
phase increases bonding strength, homogenizes covalent
electron distribution, and elevates phase melting point,
thereby improving overall alloy performance [77].

2.6 Mg-Al-Sr alloys

Mg-Al-Sr alloys were developed to replace rare
earth elements with alkaline earth additions [78],[79]. The
first-generation Mg-5Al-2Sr (AJ52x), when processed
with optimized parameters, exhibits superior creep
resistance, elevated-temperature performance, and
castability. This is attributed to reduced aluminum
supersaturation in primary magnesium and the formation
of high-melting-point Al-rich Zr phase, replacing
Mg17Al12 phase [80]–[82]. The enhanced Mg-6Al-2Sr
(AJ62x) system delivers: (i) die-cast versions with
exceptional creep resistance, hot tearing resistance, and
corrosion resistance; (ii) high-ductility variants (AJ62Lx)
that improve tensile strength and elongation at room
temperature by precisely tuning aluminum solid
solubility while maintaining castability [83].

3 Typical Mg alloy die casting defects
Large-scale integrated magnesium die castings are

prone to various defects— including porosity, shrinkage
porosity, hot tearing, cold shuts, and distortion (Fig. 4)—
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due to their thin walls, complex geometries, non-uniform
temperature distribution, and gas entrapment during
high-speed melt filling. These defects significantly
compromise component performance and pose
limitations on broader industrial implementation of
magnesium integrated die casting. Unlike gravity casting,
defect formation mechanisms in magnesium die casting
involve greater complexity. This section provides an
overview of the characteristics and contributing factors
for the typical defects illustrated in Fig. 4.

Fig.4 Common defects in die casting

3.1 Porosity-related defects

The primary drawback of HPDC is porosity.
Depending on pore location and size, castings exhibit
position- and direction-dependent properties in ductility,
strength, and corrosion resistance. Early research
confirms that extrinsic pore defects become the dominant
limiting factor for ductility when pore volume fraction
exceeds a critical threshold [50],[84]. Extensive studies have
established correlations between porosity levels and
ductility/fracture behavior in Mg castings. For instance,
Chadha et al. [84] and Jung [85] modified the classical
Brown-Embury model by incorporating crack tip radius
and size parameters to predict tensile ductility [86]. Based
on morphological characteristics and formation
mechanisms, porosity defects are categorized into gas
porosity and defect bands.

3.1.1 Gas porosity
Gas porosity primarily forms through air entrapment

during mold filling and decomposition of gaseous
compounds. The high-speed injection characteristic of
die casting promotes turbulent flow, making entrapped
gas porosity predominant. Such defects cannot be fully
eliminated even with vacuum-assisted systems. Typically
exhibiting smooth, spherical/elliptical morphologies with
equivalent diameters of 20-100 µm, these pores
demonstrate random distribution patterns affected by

component thickness or dimensions [87],[88].
Porosity defects are characterized by destructive

methods and non-destructive techniques, complemented
by microscopy and density measurement [89],[90]. As
shown in Fig. 5, Wu et al. [91] characterized the
morphology and distribution of typical gas pores in
die-cast samples using X-ray tomography, performing 3D
void reconstruction with VGStudio Max 2.0 software.
This analysis demonstrates that gas pores persist despite
vacuum-assisted die casting. Furthermore, morphological
parameters— including roundness, sphericity, and shape
factors—enable precise classification of void defects into
distinct categories: gas pores, gas-shrinkage pores,
net-shrinkage, and isolated shrinkage [92],[93]. Miao et al.
[88] systematically quantified the influence of micropore
size/morphology/distribution on mechanical properties
across wheel hub sections using X-ray CT.

Fig.5 Typical morphology and distribution of porosities in the
microstructure of (a–c) sample A and (d–f) sample B. (a) and (d)
2D slice images scanned by X-ray tomography, while (b,c) and
(e-,f) 3D images reconstructed by VGStudio Max 2.0 software [91].

3.1.2 Defect band
Defect bands — void-aggregated ribbon-like

structures in HPDC Mg alloys—form through synergistic
effects of melt flow, solidification behavior, and
processing parameters [94],[95]. As shown in Fig. 6, they
manifest as single, double, or multiple bands with either
contour-aligned or irregular distributions, correlating
strongly with externally solidified crystals (ESCs) [95].
Wu et al. [96] identified three distinct microstructural
zones: 1) Surface-to-band interface: Minimal voids with
fragmented, non-clustered ESCs yielding dense structure;
2) Defect band: High-density irregular voids
concentrated at grain boundaries of fine ESCs; 3) Core
region: Coarse clustered ESCs promoting randomly
distributed shrinkage porosity along grain boundaries.

Fig.6 Defects bands with different morphology and distribution
characteristics at cross section of Mg alloys die casting
samples.(a) AZ91; (b) AM20; (c) AM60; (d) AM50 [95].
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3.1.3 Factors affecting porosity-related defects
Processing stands as the primary factor governing

porosity-related defects. Conventional HPDC inherently
yields elevated gas content, failing to meet the demands
of high-strength/high-ductility components. Although
vacuum-assisted die casting (VADC) significantly
reduces component gas content, residual levels remain at
10-15 cc/100g [97],[98]. Super-vacuum die casting (SVDC)
achieves <3 cc/100g for heat-treatability, but requires
substantial capital investment. Pore-free die casting
(PFDC) technology demonstrates superior gas reduction
by injecting reactive oxygen into dies and shot sleeves to
displace air, triggering self-evacuation via oxygen-melt
reactions, as shown in Fig. 7 [99]. Notably, PFDC
applications remain predominantly Al-based; its technical
compatibility with Mg alloys, challenged by elevated
chemical reactivity, warrants further investigation.

Fig.7 Schematic diagrams of the PFDC process [99].

Process parameters constitute the primary control
factor for porosity defects in Mg alloy die castings.
Optimizing injection speed provides a cost-effective
alternative to expensive, low-efficiency VADC
technology by refining grain structure. Research
confirms that high-speed injection enhances melt
turbulence and tensile stress, fragmenting ESCs dendrites
to reduce their population while improving feeding
capacity during solidification to minimize porosity
[22],[100]–[102]. However, excessively high speeds diminish
ESCs content, triggering defect band migration toward
the core with reduced width and intensified porosity
clustering. Accelerating low-speed phases or shortening
pouring delays amplifies this effect. Increased high-shot
speeds disperse ESCs and sustain band migration,
whereas absence of high-speed injection induces
bifurcated defect bands [96].

Mold and gating system design critically influence
porosity defects in die castings. Li et al. [103] engineered a
specialized gating system that subjects melt to high shear
stress within runners, effectively fragmenting coarse ESC
dendrites and enhancing feeding capacity. This approach

yielded a homogeneous AZ91 magnesium microstructure
with reduced ESCs population and minimized porosity,
substantially improving mechanical properties.

3.2 Inclusion and hot tearing defects

In HPDC, inclusions and hot tearing constitute
critical defects.
3.2.1 Inclusion defects

Inclusions primarily originate from oxidation during
melting, flux residues, and external contamination. When
exposed to air without protective coverage, molten Mg
alloys undergo intense oxidation forming MgO
inclusions as shown in Fig. 8(a). These brittle phases act
as stress concentrators that initiate microcracks. While
gravity casting employs protective gas purging or sulfur
powder application in molds to prevent combustion, both
methods are incompatible with HPDC, exacerbating
oxide and dross formation [104]. Beyond endogenous
oxides, exogenous non-metallic inclusions arise from die
lubricant residues or tooling wear particles. Notably,
advancements in melt purification have substantially
reduced flux/contaminant-derived inclusions, rendering
oxides the predominant contributor in modern casting
systems [105].

Fig.8 (a) Fracture surface of a pure Mg test bar cut from a
top-filled cast plate showing dark features subsequently

identified as oxide films, (b) Sketch of a surface-film entrainment
event in a light alloy casting [106],[107].

Cashion et al. [108],[109] identified monolayer
MgO-MgF2surface films via XPS/AES analysis.
However, oxide films exhibit multilayered configurations:
mold-filling turbulence induces film folding, forming
double-layer entrainment defects (bifilms) when dry
surfaces overlap, as shown in Fig. 8(b) [107]. Pettersen et
al. [110] reported a trilayer evolution, where initial MgO
transforms into MgF2/MgO-rich/ MgF2 sandwich
structures through F diffusion. Peng et al. [111]

demonstrated that bifilms in AZ91 melt filter and capture
Al8Mn5 particles, subsequently dragging intermetallics to
form ultra-large aggregates that exacerbate detrimental
effects. Consequently, the "Bifilm Index" was established
to quantify casting quality by measuring the total length
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of entrained double oxide films on polished surfaces of
standardized reduced-pressure test samples [112].
3.2.2 Hot tearing

Hot tearing, a critical defect in HPDC processes,
significantly impacts casting quality. It is fundamentally
distinguished from cold cracking by its formation above
the solidus temperature, initiated when localized stresses
exceed the strength of partially solidified metal coupled
with inadequate feeding [113],[114]. Large structural castings
exhibit greater susceptibility than smaller components.
The hot tearing susceptibility (HTS) quantifies this
propensity as shown in Fig. 9 [115]. Moreover, Song et al.
[30] have comprehensively analyzed key influencing
factors and susceptibility laws governing Mg alloy hot
tearing behavior. Thus, this section provides a concise
overview.
3.2.3 Factors of inclusions and hot tearing

The production of high-quality lightweight alloy
castings is critically dependent on melt treatment
efficiency. Mg alloys exhibit high reactivity with gases
such as O2, water vapor, and N2 at elevated temperatures,
leading to inclusion formation in the melt that
compromises casting integrity and mechanical properties.
Consequently, melt treatment techniques fundamentally
govern inclusion content. Significant global
advancements have been achieved in Mg alloy melt
purification technology, which is categorized into
flux-based and flux-free methods according to flux
usage.
Flux refining, a standard process for magnesium melt
purification, promotes inclusion wettability through
flux-melt interactions, inducing agglomeration into larger
particles. These particles separate from the melt via
gravitational settling to the crucible bottom [116]. While
halide salt mixtures e.g., MgCl2, KCl, and CaCl2 are
predominantly employed, this method faces industrial
limitations due to environmental concerns, flux-derived
inclusions, and metal loss.
Flux-free methods, as innovative systems for Mg alloy
melt purification, remove inclusions via physical
mechanisms while eliminating secondary contamination
risks inherent to flux-based approaches and mainly
include electromagnetic purification, ultrasonic
purification, bubble flotation, and filtration purification.

Electromagnetic purification leverages the
conductivity differences between metals and non-metals
to achieve dynamic separation of inclusions under a
magnetic field. This method is particularly effective for
removing fine solid-liquid inclusions with particle sizes

at the micron scale and densities similar to molten Mg.
However, the efficiency degradation caused by slag
accumulation on container walls must be addressed
[116],[117]. Ultrasonic purification is primarily employed to
remove oxide inclusions. It utilizes ultrasonic phenomena
to accelerate the collision-coalescence process of oxide
inclusions within a standing wave field [118]. This method
offers environmental benefits while simultaneously
facilitating grain refinement [119]–[122]. Nevertheless, its
industrial-scale implementation is constrained by the
limitations of high-power ultrasonic generator systems
[116]. Bubble flotation technology removes inclusions
through the dual mechanisms of adsorption and flotation
by inert gas microbubbles. It offers simple operation and
environmental friendliness. However, synergistic
optimization of process parameters, such as bubble size
and flow rate control, remains essential for enhancing
process efficiency [116]. Filtration purification, serving as
a final refining step, employs multistage filter media to
intercept inclusions, thereby significantly enhancing melt
cleanliness. However, this method is inherently limited
by filter clogging and high maintenance costs [123],[124].

Current research prioritizes coupling and optimizing
multiple technologies, such as electromagnetic-ultrasonic
refining and integrated bubble flotation-filtration.
Simultaneously, intelligent equipment development, like
self-cleaning filters and adaptive control systems, is
emerging as key to overcoming technical bottlenecks.
Despite industrial adoption challenges (e.g., high
investment, narrow process window), non-flux refining
remains crucial for advancing high-quality Mg alloy
casting due to its sustainability and precision control
capabilities.

Fig.9 Average hot tearing rate of Mg alloys [115].

3.3 Filling and solidification defects

During die casting, molten metal is prone to defects
during high-velocity filling and rapid solidification,
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directly compromising the casting's mechanical
properties, air-tightness, and surface quality. These
defects primarily fall into three categories: cold shut,
misrun, and flow mark.
3.3.1 Cold shut

Cold shuts are linear defects formed at converging
melt fronts due to insufficient thermodynamic conditions
during die casting (Fig. 10(a)), essentially representing
discontinuous interfaces caused by inadequate kinetic
energy at flow fronts [125]. Particularly prevalent in
complex thin-wall castings, Pareto analysis identifies
them as the primary improvement target of defect-related
issues [126]. When the melt temperature falls below the
liquidus or the mold temperature is insufficient,
premature solidification of flow fronts occurs, where
oxide layers impede fusion [127]. What’s more, inadequate
injection pressure or velocity undermines the penetration
capacity of molten metal flow, while faulty gating system
design (e.g., undersized runner cross-sections, excessive
branch runner length variations) causes temporal
asynchrony in multiple flow fronts, exacerbating cold
shut risks [127]. Industrial case studies confirm that
elevating mold temperature, injection velocity, and
optimizing gate locations significantly reduce cold shut
occurrence [128]. Numerical simulations further reveal that
melt convergence angles ＞90°drastically increase risk,
necessitating runner topology optimization to maintain
angles within 30°~60° [129].

Fig. 10 (a) Cold shut, (b) Misrun, (c) Flow marks

3.3.2 Misrun
As illustrated in Fig. 10(b), misruns manifest as

localized casting deficiencies due to incomplete cavity
filling, primarily attributable to three factors: melt
fluidity, filling dynamics, and mold thermal equilibrium
[130]. Inadequate fluidity often stems from improper alloy
composition or insufficient superheat temperature, while
deficient injection pressure and shortened dwell time
compromise filling dynamics, preventing the melt from
overcoming cavity flow resistance. Undercooled zones
caused by mold design defects accelerate solidification at
flow fronts, disrupting filling continuity.[131]–[134]. Notably,
machine learning (ML)-based process parameter
optimization is emerging as a novel approach to address
misruns in complex castings [135]–[137].

3.3.3 Flow marks
As shown in Fig. 10(c), flow marks manifest as

wavy/streaky surface defects formed by temperature
fluctuations or delayed solidification at melt flow fronts,
with morphology directly correlating to flow stability [138].
Excessive mold surface roughness or uneven release
agent spraying increases contact resistance between flow
fronts and mold walls, inducing periodic velocity
variations that generate visible marks. Uncontrolled
temperature gradients in molten metal cause localized
front solidification, triggering stick-slip flow patterns that
exacerbate defects. Research demonstrates that mold
surface polishing, precision temperature control systems,
and pulsed release agent spraying effectively mitigate
flow marks [139].

3.4 Mould and mechanical action defects

3.4.1 Die soldering
The flow behavior of molten metal during casting is

significantly governed by key parameters, including
plunger speed, mold temperature, shot sleeve temperature,
and melt pressure [140],[141]. Unlike the misruns discussed
in Section 3.3, which can be avoided through parameter
adjustment, sticking defects resist elimination via free
parameter modulation, particularly in Al alloys. The
underlying mechanism involves: formation of
intermetallic phases at Al-Fe interfaces, where
micro-scale Al-rich liquid phases precipitated between
phases act as adhesive "welding" casting to mold [142],[143].
Alex et al. [144] proposed a novel theory: intermetallic
phases essentially represent thermomechanical wear
manifestations, as traditional thermodynamic/kinetic
theories fail to fully explain sticking in HPDC, a
perspective endorsed by Terek et al. [145].

In contrast, Mg alloys exhibit markedly lower
sticking tendency in HPDC due to low Mg-Fe affinity
[146]. Sticking in Mg alloys primarily correlates with
Al/Mn content and Al-Fe-Mn intermetallic phase
formation [146]. Benefiting from reduced sticking risks,
Mg alloy die casting offers an expanded process window,
enabling mass production of large automotive
components with wall thicknesses <2mm.
3.4.2 Burrs

Burrs formation (also termed flash or fins) in
integrated die castings fundamentally results from molten
metal penetration into mold parting lines or moving
component gaps under high pressure. Contributing
factors include: loss of fit precision due to mold aging,
improper machine parameter settings, and flawed
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gating/venting system design. Notably, new molds may
initially produce defect-free castings; however, with
increasing cycles, release agent residue accumulation and
moving part wear trigger progressive flash deterioration,
evolving from micro-burrs to macro-fins. Table 1
comprehensively categorizes Burrs causes and
corresponding removal methods [147].
Table 1 Causes and corresponding removal methods of burrs [147]

Burr Formation Causes Removal

Methods

Mold-Related

Factors

Mold wear/aging

Manual or

mechanical

removal

Trimming

Grinding

Shot blasting

Thermal

explosion

method

Chemical

dissolution

High-pressure

water jet

Ultrasonic

removal

Insufficient mold

manufacturing precision

Mold deformation

Parting surface damage

Excessive clearance/wear

of movable components

Process

Parameter

Factors

Insufficient clamping

force

Excessive injection

pressure

Overhigh injection speed

Excessively high melt

temperature

Non-uniform/overh

igh mold temperature

Equipment

Factors

Malfunction of clamping

mechanism

Poor parallelism of die

casting machine

Material

Factors

High fluidity of molten

metal

For integrated die casting of large, complex
thin-walled components, burrs control carries critical
significance: it not only compromises aesthetics and
dimensional accuracy, but its removal constitutes
labor-intensive post-processing that substantially elevates
costs. With advances in artificial intelligence,
robot-assisted flash removal is emerging as an
efficiency-enhancing solution [148],[149].
3.4.3 Deformation

Deformation constitutes a critical defect in
large-scale die castings, manifesting as
post-cooling/ejection deformations including bending,
twisting, and localized collapse, fundamentally attributed

to non-uniform residual stresses exceeding material
stiffness limits [150]. Root causes encompass four
dimensions: primarily heterogeneous shrinkage induced
by differential thermal expansion coefficients between
casting and mold; secondly, localized overcompaction or
underfilling triggered by inadequate material fluidity;
thirdly disruption of melt overflow-solidification
synchronization due to improper injection
speed/temperature; and finally design-phase deficiencies
involving excessive tolerance buffers, inaccurate
shrinkage allowance calculations, and insufficient
process capability. Particularly for components with
significant wall thickness variations, non-uniform
cooling prevents precise simulation of quenching
processes, resulting in compromised dimensional
tolerance compliance that necessitates systematic
deviation pattern analysis by process engineers.

Multi-pronged strategies are implemented for
deformation control: adopting heat-treatment-free
materials to eliminate quenching deformation; optimizing
product geometry to ensure wall thickness uniformity
and suppress shrinkage gradients; redesigning gates to
enhance melt flowability while improving venting to
prevent gas-induced distortion; precisely regulating
injection speed, temperature, and intensification pressure
to achieve uniform filling and residual stress
minimization; utilizing CAE simulation to predict risks
and optimize structural design; and ultimately employing
calibration dies with automatic shaping functions for
dimensional rectification [151],[152].

4 Numerical simulation

Numerical simulation technologies have
dramatically accelerated material development, with
breakthroughs in high-throughput computing over the
past two decades establishing multi-scale modeling as a
cornerstone tool in materials R&D [153]–[155]. Before
simulation adoption, foundry process evaluation relied on
resource-intensive trial production methods with low
efficiency [156]. Since the inaugural numerical simulation
of casting solidification in 1962, this technology has
become indispensable for process optimization, its
accuracy now widely endorsed by industry [157].
Particularly given increasingly complex casting
geometries and rising costs, numerical simulation has
emerged as a pivotal tool for foundry process
enhancement. As summarized in Table 2, Mg alloy die
casting simulations span full-scale chains from macro
thermo-fluid dynamics to microstructural evolution. This
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section systematically elucidates the principles and
applications in Mg alloy die casting, while analyzing
current challenges and future trajectories.
Table 2 Numerical simulation scale and method of die casting Mg

alloy [158,159]

Scale
Level

Simulation
Objectives

Common
Methods

Representati
ve Tools

Macroscal
e

Melt filling
behavior,
temperature/stre
ss fields

Finite
Element
Method

FLOW-3D,
ProCAST,
MAGMASof
t

Mesoscopi
c scale

Dendrite
growth, defect
formation

Phase Field,
Cellular
Automata

MICRESS

Microscal
e

Grain
nucleation/grow
th

Cellular
Automata,
Monte Carlo

DICTRA,
DAMASK

Atomic
Scale

Interfacial
energy diffusion
kinetics

Molecular
Dynamics,
First-Principl
es
Calculations

LAMMPS,
VASP

4.1 Macro-scale simulation of die-casting Mg alloy

Macroscopic simulation of Mg alloy casting
primarily focuses on modeling molten metal flow
behavior patterns, thermal fields, and stress distributions.
With revolutionary advances in numerical simulation
technologies, such macro-scale process simulations have
now matured and gained extensive industrial
implementation.

4.1.1 Flow field simulation

The mold filling process in casting fundamentally
adheres to three physical conservation laws: mass,
momentum, and energy. This process is fully described
by a set of governing equations comprising: the
continuity equation, Navier-Stokes equations, Volume of
Fluid (VOF) equation, and energy equation:
1） Continuity equation-mass conservation equation

The continuity equation is the basic description of
the mass conservation law of moving fluid [160]:

Where  is the density of molten metal，V is the velocity
of the fluid，t is time，

For incompressible fluids, the density is
independent of time and location. Whether in steady state
or unsteady state, the continuity equation can be

simplified as：

Where u, v, w are the velocity components along the x, y,
z directions, respectively.
2） Navier-Stokes equation-momentum conservation

equation [161]:

where G is gravity， is the stress tensor，D is the partial
differential operator.

For incompressible fluids:

Where  is the dynamic viscosity ， Then the
Navier-Stokes equation can be rewritten as：

3） Energy conservation equation

According to the Fourier heat conduction law and
the law of conservation of energy, the energy
conservation equation of heat transfer in molten metal
can be obtained [159]：

where  is the temperature of the molten metal, Cp is the
equal pressure specific heat capacity,  is the thermal
conductivity of the molten metal. When the density,
isobaric specific heat capacity, and thermal conductivity
are constant, the above formula can be changed to：

where  is the diffusion coefficient of molten metal,
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4） Volume function equation：

For incompressible fluids [162]：

Most fluid flow simulations operate under low
Mach number conditions (Ma<0.3), where fluid
compressibility is negligible, permitting incompressible
flow treatment. Using compressible solvers for such
scenarios necessitates prohibitively small time steps,
drastically increasing computational costs—a
fundamental driver for developing dedicated
incompressible solvers. The core challenge in
incompressible computation lies in the continuity
equation manifesting as a divergence-free constraint
(∇·u=0) rather than a time-evolution form, requiring
pressure (lacking a time-dependent term) to satisfy this
constraint [163].

Marlow's Marker-and-Cell (MAC) method solves
pressure by deriving a Poisson equation from the
divergence of the momentum and continuity equations
[164]. Amsden's Simplified MAC (SMAC) employs a
predictor-corrector approach: velocities are predicted and
then corrected via solving a Poisson equation for a scalar
potential [165]. In contrast, Chorin's Artificial
Compressibility Method (ACM) eliminates the need for
solving a Poisson equation, but is limited to obtaining
steady-state solutions [166].
4.1.2 Temperature field simulation

Numerical simulation of the temperature field in
casting typically involves two distinct phases: filling and
solidification. The filling stage constitutes a transient
convection-diffusion problem.

where C is the specific heat capacity, ST is the heat source
term. The transient temperature field during solidification
can be obtained by solving the Fourier heat conduction
equation. The solution requires initial conditions and
boundary conditions, with the latter typically being the
third kind (Robin condition), representing heat exchange
at the boundary, expressed as:

Where T and T∞ are the temperatures at the interface
contact between the casting and the mold, respectively, h
is the interface heat transfer coefficient between the

casting and the mold.
The calculation of the temperature field in casting

must account for the latent heat release during the
liquid-solid phase transition. Incorporating latent heat,
the unsteady heat conduction equation becomes:

where L is the latent heat of solidification of the alloy, fs
is the solid fraction.

As analyzed in Section 3, temperature field
distribution critically influences casting defect formation.
Therefore, computer simulation-based process
optimization before physical casting experiments can
effectively prevent such defects. The temperature
gradient criterion (G), originally proposed by Bishop and
Pellini, was refined by the Niyama group in 1982. They
established a strong correlation between the critical
temperature gradient required for sound castings and
solidification time, reformulating it as G/(Rc)1/2 , known
as the Niyama criterion [167]. Its validity has recently been
verified for TiAl [168], Al [169], and Mg [170] alloys.
4.1.3 Stress field simulation

During solidification, castings evolve through liquid,
mushy, and solid states, developing internal stresses from
three sources: (1) thermal stresses due to uneven wall
thickness and cooling rates; (2) phase transformation
stresses from liquid-solid and subsequent solid-state
phase changes; (3) mechanical constraints from
mold/core resistance to shrinkage. Given the complexity
of stress-strain relationships, current research focuses
predominantly on the mushy and solid zones (particularly
post-solidification regions), whereas the liquid zone
remains less explored.

For thermal stress calculation in the solid region of
castings, the thermo-elastoplastic model is most widely
employed. It neglects viscous effects: materials deform
elastically before yielding and plastically post-yielding,
with both elastic modulus and yield stress being
temperature-dependent. Crucially, these parameters
approach zero as temperature nears the melting point.
The constitutive relationship is governed by:

where {d is the stress increment, [D]ep is the
elastoplastic matrix, {d and {d is the total strain
increment and thermal strain increment.

4.2 Mesoscale simulation of die-casting Mg alloy

Conventional casting relies on empirical process
design for quality control, lacking quantitative
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characterization of temperature/stress fields during
forming and observation of melt flow-solidification
behavior with defect evolution. In contrast, full-process
numerical simulation significantly enhances R&D fault
tolerance: it enables a transition from heuristic
trial-and-error to scientific modeling, visualizes dynamic
multi-physics responses, and accurately predicts defect
types, distribution, and dimensions, thereby optimizing
processes, improving product quality and productivity,
while reducing manufacturing costs.

Porosity defects critically restrict the heat
treatability of castings and substantially degrade product
quality. As a key initiator of fracture susceptibility, this
issue has garnered significant attention from researchers
and manufacturers. As shown in Fig. 10 (a1-f2), utilizing
Magma simulation software, Cao et al. [171] demonstrated
that while gas vortices in conventional die casting
impede venting efficiency, unidirectional upward gas
movement in vacuum die casting drastically reduces
localized gas entrapment constrained by flow fields. This
mechanism minimizes gas capture by molten metal,
enabling effective porosity control. Li et al. successfully
predicted pore distribution in WE54 alloy via ProCAST
[170]. Wang et al.'s [172] numerical simulations of Hot
Tearing Index (HTI) for Mg-Y and Mg-Zn-Y alloys
revealed close alignment between predicted crack
locations/severity and experimental results in Mg-Zn-Y
alloys (Fig. 10 (g-j)). However, two critical limitations of
the HTI module must be noted: First, simulation validity
depends on comprehensive stress-strain hardening data—
accurate composition and mold temperature sensitivity
analysis requires complete mechanical property
databases. Second, HTI values are non-comparable
across alloy systems; the module is solely applicable to
well-characterized alloys with systematically established
parameters.

Fig. 10 The velocity vector of vacuum die casting filling (a1-f1);
the velocity vector of ordinary die casting filling (a2-f2) [171];

comparison between the simulation results of HTI and
experimental observations for Mg-4.5Zn-xY alloys at the mould
temperature of 250°C, (g) x=0, (h) x=0.4, (i) x=0.9, and (j) x=2 [172].

Defect formation exhibits significant correlations

with mold design and process parameters; optimizing
these factors effectively mitigates defects. Amol et al. [173]

optimized cooling channel configurations using ANSYS
and adjusted gate thickness based on MAGMA flow
simulation results. Through numerical modeling and
experimental validation, Niu et al. [129] proposed the
novel concept of Effective Flow Length (EFL) to
precisely evaluate the castability of ultra-large
thin-walled high-pressure die castings. This metric
employs geometric stability and mechanical properties as
critical criteria for structural-grade casting quality
control.

4.3 Micro-scale simulation of die-casting Mg alloy

Microscale simulation of die-cast Mg alloys focuses
on predicting grain morphology and size. Oldfield
pioneered the integration of nucleation and growth
functions into the heat source term of thermal transport
equations, enabling quantitative characterization of
solidification microstructures [174]. Current methodologies
bifurcate into deterministic and stochastic approaches:
deterministic methods describe grain nucleation density
at specific solidification stages via
undercooling-dependent functions, while stochastic
approaches employ probability-based models to
randomize nucleation sites and grain orientations. The
microstructure modeling framework comprises coupled
nucleation and growth models.
4.3.1 Grain nucleation model

Oldfield pioneered a continuous nucleation model
that integrates undercooling and cooling rate effects to
accurately characterize the complete nucleation process,
enabling prediction of grain size distributions— hence
termed the Oldfield Continuous Nucleation Model [174].
Hunt's instantaneous nucleation model (1980s), grounded
in classical solidification theory, assumes immediate
nucleation completion when the melt temperature drops
below the nucleation temperature without subsequent
nucleation events. While this simplification facilitates
solid fraction calculation in micro-modeling, it fails to
predict grain size accurately [175]. In contrast, Thevoz et al.
[176] developed a quasi-instantaneous nucleation model
incorporating Gaussian distribution, establishing a
correlation between undercooling (  T) and stochastic
density distribution for precise nucleation description.
Grain density at specific undercooling is derived by
integrating this probability distribution:

where  TN is the maximum supercooling degree of
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nucleation,  T is the standard deviation of the
distribution, nmax is the maximum density of grains.

The model has been successfully applied to the
simulation of dendritic and eutectic alloys, but the grain
collision effect of the final phase is not considered.
4.3.2 Grain growth model

Grain growth models bifurcate into deterministic
and stochastic categories. In deterministic models for
eutectic alloys, grains are typically assumed to grow
spherically. However, this assumption breaks down
during late-stage solidification due to intergranular
contacts, where evolving effective growth area alters
growth kinetics. Dendritic alloy solidification exhibits
greater complexity: dendritic growth governed by solute
redistribution and diffusion depends not only on
undercooling but also on constitutional undercooling,
precluding simplistic spherical approximation.
Consequently, Rappaz, Thevoz, and Kurz developed a
dendritic growth kinetics model [177],[178]:

where Rg is the radius of the growing grain shell, D is the
solute diffusion coefficient, m is the slope of the alloy
liquidus, c0 is the solute concentration in the liquid phase
outside the spherical diffusion layer,  is the
Gibbs-Thomson coefficient, k is the solute equilibrium
distribution coefficient, cR is the solute concentration in
the liquid phase at the spherical inner diffusion layer.，c*
is the solute concentration in the interdendritic liquid
phase in the spherical grain.

Recognizing the limitations of deterministic
solidification models in heat and mass transfer,
necessitates stochastic approaches. In static systems,
these processes exhibit diffusion-controlled nature, where
diffusion is intrinsically a microscopic stochastic process.
Furthermore, grain growth incorporates random
characteristics such as energy fluctuations and structural
perturbations. Predominant stochastic simulation
methodologies currently include Monte Carlo (MC),
Cellular Automata (CA), and Phase Field (PF) methods.

The Monte Carlo (MC) method developed by Spittle
and Brown minimizes interfacial energy by computing
energy states at heterogeneous interfaces and executing
state transitions via stochastic probabilities. This
approach constructs 2D microstructural models
exhibiting exceptional consistency with metallographic
sections, accurately replicating grain selection in
columnar zones, Columnar-to-Equiaxed Transition (CET),
and qualitatively demonstrating impacts of solute
concentration and melt superheat on final microstructures

[179],[180].
Cellular Automata (CA) integrates strengths of

stochastic and deterministic approaches, employing an
interfacial state grid to delineate solid/liquid phases while
quantifying undercooling and solute concentration effects.
Its large grid scale and computational domain enable
decoupled temperature/flow field solutions via finite
element, finite difference, or Boltzmann methods,
achieving macro-micro coupled solidification
microstructure simulation with broad applicability [181].

The phase field method replaces explicit interface
tracking with evolving phase field variables, concurrently
solving phase field equations with energy and solute
conservation equations to precisely simulate
solidification microstructural evolution. This framework
further couples with macroscopic flow and temperature
fields to predict alloy microstructural development [182].
4.3.3 Application

To elucidate microstructural evolution mechanisms,
numerical techniques such as Cellular Automata (CA)
and phase field methods are extensively employed in
dendritic growth studies. Huo et al. [183] developed a
dual-grid CA model to simulate equiaxed and columnar
grain growth during directional solidification of Mg-Al
alloys. Böttger et al. [184] investigated equiaxed
solidification in Mg-Al alloys using phase field modeling.
As shown in Fig. 11, Wu et al. [185] performed numerical
simulations of morphological characteristics and spatial
distribution of Mg-Al eutectic structures in die-cast Mg
alloys via a modified CA model, demonstrating excellent
agreement with experimental observations.

Fig.11 Distribution of Mg-Al eutectic at surface (a, c) and central
(b, d) regions of "cover-plate" die casting: (a-b) simulated, (c-d)

experimental observed [185].

Controlling cooling rates is critical for enhancing
solidification microstructures in Mg alloys. Wang et al.



第 17 届亚洲铸造会议
THE 17THASIAN FOUNDRYCONGRESS

- 493 -

2 有色合金

Part 2: Non-Ferrous Alloy
[186] established a quantitative model describing
synergistic effects of cooling rate and Zr content on
heterogeneous nucleation efficiency in Mg-Gd-Y-Zr
alloys, with CA-simulated grain size and eutectic phase
volume fraction demonstrating excellent agreement with
experimental data. Through combined
experimental-numerical analysis, Zhao et al. [187] revealed
that rapid cooling crucially refines grains by elevating
effective undercooling and counteracting latent heat
inhibition of heterogeneous nucleation. Integrating
synchrotron radiation X-ray imaging with phase field
simulations, Wang et al. [188] systematically investigated
cooling rate effects on dendritic morphology evolution in
Mg-Gd alloys under fixed thermal gradients. They
discovered that low cooling rates dominate orientation
selection, whereas high rates trigger splitting instability,
governed by dynamic equilibrium between solute
diffusion fields and interfacial energy anisotropy, as
shown in Fig. 12.

During die casting, metal solidifies under applied
pressure, which critically governs microstructural
evolution in Mg alloys. Li et al. [189] employed cellular
automata to simulate microstructure development and
microsegregation under unidirectional pressure.
Integrating thermodynamic calculations with
polycrystalline phase-field modeling, Pan et al. [190]

revealed a pressure threshold effect on dendritic growth
in Mg-Al alloys.

Fig.12 The dendritic morphology of Mg-6wt.%Gd alloy under
three different cooling rates R = 0.033 K/s, R = 0.1 K/s, and R = 
0.25 K/s in directional solidification from the top to bottom,

respectively: experimental results (a1-a3), and simulated results
(b1-b3) [188].

Although current simulations of solidification

microprocesses achieve close alignment with
experimental results under laboratory conditions, the
higher-order complexity of solidification mechanisms
and process variables in industrial environments poses
significant challenges.

4.4 Atomic-scale simulation of die-casting Mg alloy

Atomic-scale simulations serve as pivotal
theoretical tools for elucidating phase transformation
mechanisms in die-cast Mg alloys. Lin et al. [191]

demonstrated that Ca addition enhances the thermal
stability of Al2Ca precipitates in AZ91 alloy, revealing
atomic-scale evolution mechanisms. Yang et al. [192]

investigated aged high-pressure die-cast Mg-Al-RE
alloys, determining key parameters for quantitative
strengthening models via first-principles to refine
theoretical frameworks. Furthermore, collaborative work
by Yang and Lv et al. resolved long-standing debates by
confirming the thermal stability of Al11RE3 phases
through rigorous first-principles analysis [193],[194].

Atomic-scale simulations further elucidate complex
solute segregation behaviors at grain boundaries. In
Mg-Nd-Mn systems, large solute atoms Nd and small
atoms Mn form four novel periodic asymmetric ordered
segregation configurations at tilt grain boundaries. This
phenomenon is governed by strain field distribution:
molecular dynamics coupled with Voronoi topology
analysis reveals periodically alternating
tensile/compressive strain regions along linear tilt
boundaries. Driven by elastic strain energy minimization,
solute atoms selectively occupy specific lattice sites,
demonstrating non-stochastic segregation behavior [195].

Die casting poses distinctive challenges, including
rapid solidification, complex stress states, and
multicomponent interactions. Current modeling
approaches require breakthroughs in cross-scale
correlation, extreme non-equilibrium condition modeling,
and high-precision multi-element potential functions.
Integrative multiscale modeling combining machine
learning, high-throughput computing, and advanced in
situ characterization will be pivotal for the precision
design and performance control of Mg alloy castings.

5 Die casting process and its effect on the
properties of Mg alloy

Die casting processes are classified into
conventional die casting (HPDC), vacuum die casting
(VADC), semi-solid die casting (SSDC), and squeeze die
casting (SDC), based on their underlying principles,
equipment configurations, and material states. Notably,
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VADC has evolved into a super vacuum die casting
(SVDC) variant. Given the significant advantages of
HPDC/VADC and the derived SVDC technology in
enhancing casting integrity, particularly in reducing gas
porosity and oxide inclusions and their emergence as a
key development direction in critical fields like
automotive lightweighting, this review focuses
specifically on vacuum die casting (VADC/SVDC),
detailing its fundamentals, characteristics, and key

HPDC and VADC have emerged as dominant
technologies for commercial magnesium alloy
manufacturing due to their superior cost-effectiveness,
dimensional accuracy, and surface quality [196]–[198].VADC
enhances casting integrity by evacuating the die cavity to
60-300 mbar before melt injection, while SVDC further
reduces cavity pressure below 60 mbar via advanced
control systems and high-efficiency vacuum pumps,
achieving more effective defect suppression. This
vacuum optimization significantly improves mechanical
properties by reducing porosity-related defects, as
demonstrated by Li et al. [199], showing 90% porosity
reduction in AZ91D alloy with modified vacuum-assisted
HPDC, as shown in Fig. 13. Le et al. [200] reported that
grain refinement from rapid cooling in SVDC contributes
90% to strength enhancement in AE44 alloy. It also
enhances heat-treatability by effectively suppressing
surface blistering, enabling post-casting strengthening
treatments [201]–[203]. Crucially, vacuum processes
substantially optimize corrosion resistance [204]–[206]. Wen
et al. [207] revealed that SVDC improves AM60B alloy’s
corrosion resistance by reducing the primary a-Mg phase
volume fraction, thereby minimizing active-phase
exposure and achieving significantly lower corrosion
rates than HPDC. Current research predominantly
focuses on alloy composition effects, whereas systematic
comparative studies across die-casting processes and
parametric optimizations remain critically
underdeveloped, constituting a key constraint for
high-end magnesium alloy applications.

Additionally, achieving ultra-low vacuum levels
below 60 mbar remains a significant challenge in
large-scale high-pressure die casting. The structural
complexity and production scale of oversized castings
impede the attainment of vacuum conditions equivalent
to those for smaller components. This technological
barrier is exemplified in the production of Tesla Model Y
rear subframes, where VADC rather than SVDC is
currently employed despite ongoing industry
advancements in casting technologies.

Fig.13 Comparison of microstructure (the first column: OM and
second column: SEM) and porosity (the third column: X-Ray

tomography) in the specimens of the conventional (the first row),
vacuum-assist (the second row), modified vacuum-assist (the
third row), and improved vacuum-assist (the fourth row) HPDC

processes [199]

6 Summary and prospect

Integrated die casting technology demonstrates
transformative advantages by consolidating multiple
traditional components into single complex geometries,
streamlining production, reducing costs, and enhancing
structural stiffness and integration. The application of Mg
alloys to this process represents a critical pathway to
overcome lightweighting bottlenecks and meet future
demands for high-performance lightweight structures in
advanced equipment. This review systematically
examines four key research dimensions: alloy design for
integrated casting, characteristic defect formation
mechanisms, implementation of numerical simulation,
and process-performance relationships, establishing a
holistic analytical framework linking process parameters,
composition, defect genesis, simulation, and performance
optimization. Future research should shift focus toward
integrated multidisciplinary innovation encompassing
materials, processes, equipment, simulation, and
performance to accelerate technological maturation and
widespread industrial adoption
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