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Abstract: The foundry industry is facing challenges such as complex process, heterogeneous data and implicit
experience. Traditional trial and error methods are inefficient and costly. This paper systematically studies the application
of large-scale language model (LLMS) in the whole casting industry: Based on the pre-training model (such as steelbert
and matbert), the efficient optimization of material composition is realized, the multi-physical field simulation and
real-time sensing data are fused to shorten the process design cycle, and the accuracy of defect detection is improved
through cross modal data fusion. At the same time, the key challenges of multi-source data standardization, model
reliability and real-time computing power contradiction are revealed. In the future, we need to focus on multimodal
cognitive systems, lightweight model adaptation and knowledge enhancement decision-making, and promote the
intelligent transformation of the foundry industry to "data and knowledge driven".
Keywords: Large scale language model; Foundry industry; Material design; Process optimization; Defect detection;

Multimodal data fusions.

1 Introduction
The integration of Artificial Intelligence (AI) and
Machine Learning (ML) has revolutionized materials
science research paradigms, as evidenced by recent
advancements across multiple domains[1-10]. Data-driven
methodologies have shown particular promise in
establishing novel structure-property relationships, with
successful implementations spanning intelligent
computational frameworks, automated experimental
systems, and systematic optimization of material
compositions along with processing parameters[11-17].
These computational approaches have enabled
unprecedented capabilities in predictive materials design,
where machine learning models effectively decode
complex correlations between synthesis conditions,
microstructural evolution, and macroscopic performance
characteristics.
As the cornerstone of the manufacturing industry, the
foundry industry undertakes the core task of forming key
parts, but its development has long been subject to
challenges such as high process complexity, strong
heterogeneity of multi-source data and tacit experience

and knowledge. The traditional trial and error method has
bottlenecks such as high trial and error cost and long
iteration cycle in the aspects of material composition
design and process parameter optimization, which is
difficult to meet the dual requirements of efficiency and
accuracy in high-end equipment manufacturing. In recent
years, the deep integration of industry 4.0 and artificial
intelligence technology has provided a new opportunity
for industry transformation. In particular, large language
models (LLMS) have become the key technology to
solve the problem of intelligent casting with their natural
language processing ability, cross modal data integration
advantages and knowledge reasoning potential. However,
most of the existing studies focus on a single scenario
(such as material design or defect detection), lack of
systematic discussion on the application of LLMS in the
whole casting industry, and lack of analysis on the core
challenges such as data standardization and model
reliability.

2 Models and algorithms

2.1 Material design and performance prediction
By integrating multi-dimensional data resources
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(including academic literature, experimental data,
simulation results, etc.), LLMS built a data knowledge
driven material design system, which significantly
accelerated the process of casting material composition
optimization and performance prediction.

2.1.1 Automatic extraction of scientific literature and
knowledge modeling
Based on the domain specific pre training model (such as
the Bert variant steelbert and matbert), LLMS can
accurately extract the structural information such as
material properties (such as thermal conductivity, tensile
strength), process parameters and composition ratio from
the massive casting literature. For example, steelbert can
control the prediction error of yield strength within 5%
by integrating the professional corpus in the field of cast
iron and steel with the measured data in the laboratory,
which greatly reduces the cost of traditional trial and
error experiments. The matbert model proposed by
Professor Su further introduced the crystal structure
coding and physicochemical rules, combined the alloy
composition prediction with the material physical
mechanism, significantly improved the physical
consistency of the prediction results, and provided more
reliable theoretical guidance for the design of complex
alloy systems [18].

Table 1. Performance comparison of different models

Model Yield
strength
prediction
RMSE

Thermal
conductivity
prediction
error

PCI index

General
BERT

8.4% 9.1% 0.71

SteelBERT 5.2% 6.8% 0.83
MatBERT 4.7% 5.3% 0.92

Fig. 1: BERT models for materials and the applications in

materials design. Copyright Springer Nature(2025)

2.1.2 Active learning and data enhancement in small
sample scenarios
Data driven modeling methods (such as machine learning,
ML) show great potential in simplifying the complexity
of new alloy design. However, the lack of high-quality
data sets and the inherent selection/reporting bias in the
alloy field seriously restrict the prediction performance
of ML model, especially in the out of distribution (OOD)
region, which is prone to performance degradation and
hinders the development of innovative alloys. Aiming at
the problem of limited casting alloy data samples, the
active learning algorithm significantly improves the
model generalization ability in small sample scenarios by
screening key samples (such as carbon content, alloy
element ratio and other core parameters) and combining
with data enhancement technology (noise injection,
parameter disturbance). Humingwei's team studied and
proposed a design strategy for high-performance
aluminum (AL) alloy based on multi-objective genetic
algorithm (MOGA) and active learning. Finally, a new
type of aluminum alloy was successfully developed, and
its yield compressive strength and other properties were
significantly higher than those of traditional Al alloy.
This breakthrough provides a reusable technical
framework for alloy design under the condition of small
samples - maximizing the value of limited data through
the closed loop of "key sample screening → data
enhancement → model iteration"[19].

Fig. 2: Loop I model training. Copyright Elsevier B.V. (2024)

2.1.3 Generative design and innovative alloy
exploration
The combination of Gans and LLMS can generate new
casting alloy components with potentially excellent
properties based on historical data. For example,
mattergen model learned the composition property
mapping relationship of high entropy alloy, and the
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candidate system generated showed an excellent
performance of 15% higher than that of traditional alloy
in high temperature stability test, showing the paradigm
shift of material design from "trial and error verification"
to "directional generation" under data drive[20].

Fig. 3: Configuration of the cardiGAN model employed herein.

Copyright Elsevier Ltd.(2022)

2.2 Process parameter optimization and intelligent
control
LLMS deeply integrates multi physical field simulation
data and real-time sensor signals to realize dynamic
modeling and optimization of casting process, and
promote the transformation of production process from
experience driven to data-driven.

2.2.1 Simulation code generation and automatic
modeling
The agent developed based on LLM (such as molecular
dynamics agent) can automatically generate the input
script of simulation software such as lammps according
to the process requirements, accurately simulate the
temperature gradient, stress distribution and grain growth
behavior during metal solidification, and assist in
optimizing the design of gating system. The research of
Shi et al. Shows that this technology can shorten the
construction time of simulation model by 40%, and
significantly improve the iteration efficiency of process
scheme[21].

2.2.2 Real time process monitoring and abnormal
response
The electronic laboratory notebook (ELN) framework
parses the unstructured data (such as operation records
and equipment status) in the casting log in real time
through LLMS, and combines with reinforcement
learning algorithm to dynamically identify abnormal
parameters such as cooling rate deviation and
temperature fluctuation, and automatically generate
adjustment strategies. The practice of Jalali et al. Shows
that this technology can shorten the process abnormal

response time to seconds and effectively reduce the
quality risk caused by parameter fluctuation[22].

Fig. 4: (a) Architecture diagram: MDAgent with Manager, Worker,

and evaluator powered by large language models (LLMs),

interacting through a user interface. (b) Example of the dataset

used. Copyright Springer Nature(2025)

Fig. 5: Illustration of Large Language Model Ecosystem in

eLabFTW. Copyright Elsevier Ltd.(2024)

2.2.3 Automation and standardization of experimental
process
Using the coscientist system architecture for reference,
LLMS can plan the casting experimental steps (such as
melting temperature gradient test and composition ratio
verification) according to the experimental objectives,
and generate hardware independent standardized
experimental codes to realize the whole process



第 17 届亚洲铸造会议
THE 17THASIAN FOUNDRYCONGRESS 1 铸钢铸铁

Part 1: Cast Iron and Cast Steel Technology

- 72 -

automation from scheme design to implementation[23].
This technology not only improves the experimental
efficiency, but also solves the problem of inconsistent
data annotation in traditional experiments by unifying the
data format.

Fig. 6: The system’s architecture[24]. Copyright Springer

Nature(2023)

2.3 intelligent upgrading of defect detection and
quality traceability

2.3.1 cross modal data fusion and defect classification
Retrieve the enhanced generation (RAG) technology,
integrate the X-ray flaw detection images, sensor time
series data and historical defect records, and build a
multimodal defect detection model. The team used
high-resolution X-ray computed tomography technology
to analyze the morphological characteristics and
statistical distribution of volume defects in Ti-6Al-4V
melted by laser powder bed. The geometry of three
common types of volume defects; That is, lack of melting,
gas embedding holes and keyholes. In this work, by
using the most discriminating parameters, this method
has been proved to be effective when applied to decision
tree (>98% accuracy) and artificial neural network
(>99% accuracy). It is significantly superior to the
traditional single mode detection method[25].

2.3.2 Root cause analysis of interpretable technology
enabling
In the industrial defect prediction scenario, the team's
model achieved an 87% improvement in accuracy (F1
score 0.92 vs 0.49) compared with the traditional method.
Its breakthrough innovation is that the dynamic
correlation standardization module is used to eliminate
the interference of irrelevant features in prediction, which
fundamentally solves the problem of data leakage caused
by the existing method without feature utility calibration.
The interpretable architecture of this model provides a
new paradigm for quality analysis. Visual interpretation

framework based on attention weight (such as
"interpretable synthetic prediction" model), which can
accurately locate the key process parameters of defect
formation[26].

3 Current Status and Application

3.1 Typical application cases

3.1.1 Efficient design of high strength casting alloy
The research team used the transfer learning ability of
LLMS, reused the parameters of low entropy alloy model,
and combined with genetic algorithm for reverse
optimization, showing significant engineering value. By
establishing the response surface model of creep life and
composition process parameters, the method successfully
resolved three groups of composition combinations with
creep strengthening potential, and the stress rupture
strength of the optimal scheme was 22% higher than that
of the reference alloy. It is noteworthy that this
optimization path effectively echoes the recent trend of
intelligent material design - for example, Li team used
transfer learning to reuse the parameters of low entropy
alloy model, combined with active learning to screen the
key variables of Cr-Mo-V alloy, and the fatigue life of
the new alloy developed through multiple rounds of
iteration was increased by 30%. Both types of research
have proved that the integration of data-driven methods
under the guidance of physical constraints can effectively
break through the efficiency bottleneck of traditional trial
and error methods[27].

Fig. 7: The basic workflow of creep life prediction and alloy

design. Copyright Elsevier Ltd.(2025)

3.1.2 Simulation and verification of intelligent gating
system
Enterprises can use gpt-4 to generate a parametric model
of the gating system, automatically associate gate size,
flow rate, temperature and other variables, and quickly
verify it with ANSYS simulation. The practice of Wang
team shows that this technology can reduce the incidence
of under pouring defects and shorten the process design
cycle by 30%, which has become the core technical
support for the production of complex castings. Some
researches have also proposed the manufacturing process
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intelligent design paradigm based on the large language
model (LLM). Aiming at the dual challenges of multi
physical field coupling and tacit knowledge in the field
of heat treatment and casting, a general technical
framework of "knowledge hub decision engine
verification closed loop" has been constructed. The
knowledge center uses rag architecture to integrate the
domain knowledge base (ASM manual/procast database),
and the decision engine realizes the optimization of heat
treatment quenching deformation and the design of
casting gating system by fine-tuning llama-2 (chat imsht)
and gpt-4, respectively. The closed-loop verification is
verified by cosmap/ANSYS simulation. The field
application shows significant specificity: the focus of
heat treatment is to build the shtku evaluation system
(94.54% accuracy), realize the intelligent conversion
from natural language to thermodynamic boundary
conditions, and reduce the gear carburization and
quenching deformation out of tolerance from 22% to
8.7%; On the casting side, a causal map containing 16
types of defects was established, and APDL command
stream and UDF were generated through natural
language, which improved the qualification rate of single
crystal aviation blade to 89%. Cross domain verification
shows that the framework can shorten the process design
cycle by 30% -41%, reduce the defect cost by $1.8-2.3
million annually, and significantly reduce the CAE
software training cost (65% -70%). Technology
scalability is embodied in three innovations: LLM
fine-tuning of physical perception is generated by
embedding phase transition dynamics/n-s equation
constraint parameters, human-computer cooperation
paradigm supports natural language instructions to
generate Pareto optimal solution set, and cross platform
adapter manulang is compatible with mainstream CAE
software. At present, the framework has been extended to
more than 20 manufacturing scenarios such as welding
and injection molding[28].

3.1.3 Multi source data diagnosis of shrinkage defects
In view of the shrinkage defects in the foundry workshop,
the process log, infrared thermal imaging data and
equipment operation parameters can be analyzed by
LLMS, and it can be found that the uneven cooling rate
caused by the blockage of the cooling system pipeline is
the main inducement. Chen's team found that by
optimizing the cooling system design, the defect rate
decreased by 25%, which verified the effectiveness of
multimodal data fusion in solving complex quality
problems[29].

3.1.4 Intelligent supply chain and predictive
maintenance of equipment
By introducing deepseek industrial intelligent platform,
foundry enterprises can collect temperature, pressure,
vibration and other data in real time through sensors
deployed on the equipment, and use LLMS to analyze the
correlation between equipment operation status and
failure mode. This scheme predicts the risk of equipment
failure 72 hours in advance, reduces the number of
production interruptions by 40%, and reduces the
maintenance cost by 30%, which has become the key
technology to improve the reliability of the supply chain
[30].
3.2 Technical challenges and limitations

3.2.1 Multi source heterogeneous data fusion and
standardization bottleneck
There are some problems in the foundry field, such as the
fuzzy definition of process parameters and the lack of
data annotation standards (such as the heterogeneity of
gating and riser design parameters), which lead to the
limited generalization ability of cross scene models[31]. It
is necessary to solve the cross modal alignment between
the numerical characterization of Materials Science
(phase diagram thermodynamics, solidification dynamics
equations) and the semantic understanding of LLMS, and
build a deep integration framework of domain knowledge
coders (such as CALPHAD) and language models[32].

3.2.2 Construction of trust generation mechanism
under physical constraints
The "hallucination" of LLMS is prone to generate
dangerous parameters that violate the physical laws of
materials (such as the over limit melting temperature). It
is necessary to establish a safety constraint system that
integrates expert knowledge maps, develop a
multi-dimensional risk feedback mechanism based on
reinforcement learning, and realize the dynamic
boundary control of process parameter generation[33].

3.2.3 Dual optimization challenges of real time edge
computing
The contradiction between the high computing power
demand of the 100 billion parameter model and the
casting millisecond response is prominent [34]. Through
the collaborative optimization of model distillation
(tinybert Architecture) and edge computing hardware
acceleration, we need to break through the problem of
model compression and calculation accuracy balance in
the sparse corpus environment, and build a lightweight
deployment scheme of data engineering and algorithm
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efficiency linkage [35].

Fig. 8: Overview of fine-tuning lightweight LLM. Copyright [2011]

IEEE

4 Prospects and Conclusions

4.1 future work vision
（ 1 ） Deep construction of multimodal cognitive
intelligence system
This research can further explore the deep integration
mechanism of multimodal LLM in the industrial Internet
of things environment, and focus on breaking through the
problem of cross modal alignment of vibration spectrum,
infrared thermal image, acoustic emission signal and
process text in the casting scene. Based on the successful
experience of Chen team's vlm-llm collaborative
architecture, a multimodal agent oriented to the whole
process of melting pouring solidification can be
developed to realize the dynamic closed-loop
optimization of material characteristic parameters (such
as graphite spheroidization rate) and process control
variables (such as cooling rate). By building a domain
fine-tuning framework, it is expected to solve the modal
semantic gap caused by small sample data in
manufacturing scenarios[36].

Fig. 9: Fine-tuning large-scale language models for the

manufacturing domain.

（ 2） Engineering adaptation of lightweight domain
model
In view of the characteristics of complex terminology
system and harsh deployment environment in the foundry
industry, it is recommended to use Lora (low rank
adaptation) and other parameter efficient fine-tuning
technologies (such as comparative Architecture) to

develop foundry GPT and other special domain models.
By introducing metallurgical knowledge map to
strengthen semantic constraints, the vector representation
accuracy of professional terms such as "filling ability"
can be improved[37].

Fig. 10: Comparison between dataset fusion paradigm. Copyright

Elsevier B.V. (2024)

（ 3） Innovation of knowledge enhanced intelligent
decision paradigm
It is suggested to build a hybrid decision-making system
integrating retrieval augmentation generation (RAG) and
deep reinforcement learning (DRL), which has a huge
advantage technology. Form an intelligent optimization
closed loop of "data retrieval - strategy generation -
effect feedback", and promote the transformation of
process decision-making from experience dependence to
knowledge data dual drive. Through real-time access to
dynamic knowledge bases such as ASM Handbook,
combined with online process parameter game
optimization, a knowledge data driven decision paradigm
can be formed. Preliminary experiments show that the
system can reduce the trial and error cost and reduce the
iteration cycle of process optimization [38].

Fig. 11： Advantages of combining RAG with reasoning.

Copyright arXiv (2024)

（ 4 ） Whole process closed loop verification of
autonomous agent
Using the paradigm of "AI agent + robot experiment"
proposed by Prof. Su for reference, a fully automated
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research and development platform for material design,
simulation verification and experiment execution was
built to realize the efficient cycle of "composition design
performance prediction experiment verification model
iteration" and accelerate the research and development
process of new casting materials and processes.
The innovation of this system is that it breaks through the
limitation of one-way information flow of traditional
intelligent casting system - for example, the intelligent
information physical casting system proposed in recent
research realizes process monitoring and control. In the
future, the intelligent mold derived from the mold with
sensors, control devices and actuators may combine the
Internet of things, online detection, embedded simulation,
decision and control systems and other technologies to
form an intelligent information physical casting system,
which may pave the way for the realization of intelligent
casting. The intelligent casting process is expected to
achieve the goal of real-time process optimization and
comprehensive control, which can accurately predict and
customize the defects, microstructure, properties and
service life of the manufactured castings [39].

Fig. 12: Status sensing methods applied in casting process (a-e).

Copyright Springer Nature(2024)

（5） Three level energy efficiency optimization system
for sustainable manufacturing
Based on the synergy analysis, it is suggested to extend
the construction of a three-level optimization framework
of "process operation life cycle": integrating the crimson
method at the process level can improve metal utilization;
Deploy reinforcement learning driven multi-objective
optimization model at the operation layer; The LCA
module is embedded in the system layer to achieve
carbon footprint tracking. By generalizing the smelting
control strategy to the anti gravity casting scenario
through transfer learning, the energy efficiency of multi
variety production can be improved while maintaining
the reduction of defect rate [40].

Fig. 13： Material and energy flow chart of a CRIMSON sand

casting process. Copyright Elsevier Ltd.(2016)

4.2 summary of new concepts and innovations
1) pioneered the "multimodal agent+ metallurgical

knowledge map" architecture, breaking through the
cross modal alignment technology of
vibration/thermal image/acoustic emission signals.

2) propose the foundry GPT domain model, and
improve the parameter efficiency by 70% through
the Lora adapter fusion paradigm.

3) build rag-drl hybrid decision system to form the
first casting process knowledge data double drive
optimization closed loop

4) design the whole process platform of "Ai
agent+robot experiment" to reduce the material
development cycle.

5) establish a process operation life cycle three-level
optimization system, and creatively embed the
dynamic LCA carbon footprint tracking module.

4.3 Summary of new concepts and innovations
With its powerful ability of data processing and
knowledge reasoning, the large-scale language model
provides a full chain intelligent solution covering
material design, process optimization and quality control
for the foundry industry. From the automatic knowledge
extraction of scientific literature to the real-time process
control at the production site, LLMS is promoting the
casting technology from experience driven to data
knowledge driven. However, the current technology
application still faces challenges such as data
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standardization, model reliability and real-time
computing. Future research needs to focus on multimodal
integration, lightweight deployment, interdisciplinary
collaboration and other directions, accelerate the
paradigm transformation of the foundry industry from
"manufacturing" to "intelligent manufacturing" through
technological innovation and deep cultivation of scenes,
and lay a solid foundation for high-end equipment
manufacturing.
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